| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 4.5 MB | Adobe PDF | |||
| 1.74 KB | License |
Authors
Advisor(s)
Abstract(s)
O aumento do consumo de energia requer atenção. Os especialistas propuseram muitas soluções para otimizar o uso de energia e propõem um sistema de gestão de energia eficiente. No entanto, desenvolver um sistema de energia que contempla agregadores de carga é óbvio para aprimorar o processo de gestão de energia. Este trabalho discute um sistema de gestão de energia para implementar programas de Demand Response (DR) usando abordagens de agregação de carga. Neste trabalho, dois estudos de caso comparam as diferentes respostas do sistema. O objetivo principal é discutir o papel de diferentes modelos de agregador de carga no sistema de energia, implementando um programa de DR. Esses agregadores de carga controlam diferentes tipos de cargas. Neste contexto, vários tipos de cargas domésticas são consideradas cargas controláveis. No processo de agregação, o objetivo é agregar as cargas que possuem as mesmas características usando a análise de agrupamento das cargas. A contribuição científica desta dissertação está relacionada com a redução da ponta e a agregação de cargas, considerando as cargas controláveis e os recursos de geração no sistema. Para atingir o objetivo anterior, foram realizados dois estudos de caso. Cada estudo de caso consiste em três cenários baseados no modelo de agregação de carga. Os resultados dos estudos indicam as respostas do sistema aos diferentes cenários e ilustram os méritos do modelo de agregador de carga. Além disso, os resultados demonstram como o agrupamento dos dispositivos de carga no sistema pode efetivamente fornecer redução de pico com recurso a programas de DR.
The increment of energy consumption takes a high level of attention. The experts have proposed many solutions to optimize energy use and propose an efficient energy management system. However, verifying the load aggregators' role energy system is obvious to enhance the energy management process. This work discusses an energy management system to implement DR programs using load aggregation approaches. In this work, two case studies compare the different responses of the system. The main goal is to discuss the role of different load aggregator models in the power system by implementing a DR program. Those load aggregators control different types of loads. In this context, various types of domestic loads are considered controllable loads. In the aggregation process, the goal is to aggregate the loads that have the same features using the clustering analysis of the loads. The scientific contribution of this thesis is related to the integration of providing the peak reduction and the clustered aggregation of loads, considering the controllable loads and generation resources in the system. To achieve the previous goal, two case studies have been done. Each case study consists of three scenarios based on the load aggregation model. The results of the case studies indicate the system responses to the different scenarios and illustrate the merits of the load aggregator model. Furthermore, the results demonstrate how clustering the load appliances in the system can effectively provide peak reduction due to the DR programs.
The increment of energy consumption takes a high level of attention. The experts have proposed many solutions to optimize energy use and propose an efficient energy management system. However, verifying the load aggregators' role energy system is obvious to enhance the energy management process. This work discusses an energy management system to implement DR programs using load aggregation approaches. In this work, two case studies compare the different responses of the system. The main goal is to discuss the role of different load aggregator models in the power system by implementing a DR program. Those load aggregators control different types of loads. In this context, various types of domestic loads are considered controllable loads. In the aggregation process, the goal is to aggregate the loads that have the same features using the clustering analysis of the loads. The scientific contribution of this thesis is related to the integration of providing the peak reduction and the clustered aggregation of loads, considering the controllable loads and generation resources in the system. To achieve the previous goal, two case studies have been done. Each case study consists of three scenarios based on the load aggregation model. The results of the case studies indicate the system responses to the different scenarios and illustrate the merits of the load aggregator model. Furthermore, the results demonstrate how clustering the load appliances in the system can effectively provide peak reduction due to the DR programs.
Description
Keywords
Agregador de Carga Demand Response Gestão de Energia Redução da Ponta Energy Management Demand Response Peak Reduction Load Aggregator Clustering
