Repository logo
 
Publication

Strategic Bidding in Electricity Markets: An agent-based simulator with game theory for scenario analysis

dc.contributor.authorPinto, Tiago
dc.contributor.authorPraça, Isabel
dc.contributor.authorVale, Zita
dc.contributor.authorMorais, Hugo
dc.contributor.authorSousa, Tiago
dc.date.accessioned2015-05-05T16:16:07Z
dc.date.available2015-05-05T16:16:07Z
dc.date.issued2013-09
dc.description.abstractElectricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.por
dc.identifier.doi10.3233/ICA-130438
dc.identifier.urihttp://hdl.handle.net/10400.22/5933
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherIOS Presspor
dc.relation.ispartofseriesIntegrated Computer-Aided Engineering;Vol. 20, nº. 4
dc.relation.publisherversionhttp://content.iospress.com/articles/integrated-computer-aided-engineering/ica00450por
dc.subjectDecision makingpor
dc.subjectElectricity marketspor
dc.subjectIntelligent agentspor
dc.subjectGame theorypor
dc.subjectMultiagent systemspor
dc.subjectScenario analysispor
dc.titleStrategic Bidding in Electricity Markets: An agent-based simulator with game theory for scenario analysispor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage346por
oaire.citation.startPage335por
oaire.citation.titleIntegrated Computer-Aided Engineeringpor
oaire.citation.volume20por
person.familyNamePinto
person.familyNamePraça
person.familyNameVale
person.familyNameMorais
person.givenNameTiago
person.givenNameIsabel
person.givenNameZita
person.givenNameHugo
person.identifierR-000-T7J
person.identifier299522
person.identifier632184
person.identifier80878
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-id2010-D878-271B
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-2519-9859
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0001-5906-4744
person.identifier.ridT-2245-2018
person.identifier.ridK-8430-2014
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id22734900800
person.identifier.scopus-author-id7004115775
person.identifier.scopus-author-id21834170800
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublicationb159f8c9-5ee1-444e-b890-81242ee0738e
relation.isAuthorOfPublication.latestForDiscoveryb159f8c9-5ee1-444e-b890-81242ee0738e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_TPinto_2013_GECAD.pdf
Size:
845.72 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: