| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 17.55 MB | Adobe PDF |
Abstract(s)
A indústria automóvel assume um papel central na economia global, sendo marcada por elevados níveis de exigência em termos de eficiência, qualidade e sustentabilidade. Neste contexto, a presente dissertação tem como objetivo propor e avaliar soluções de melhoria para os processos produtivos da Ficocables, com especial enfoque na Linha X, no corte elétrico de cabos metálicos e na conceção de um manipulador cartesiano para apoio a operações de injeção plástica. A metodologia seguida baseou-se em Design Science Research, permitindo identificar problemas concretos, desenvolver artefactos e validar soluções através de simulações, testes experimentais e análise de indicadores de desempenho. Na Linha X, os resultados demonstraram um aumento do OEE de uma média de 42 % para valores estabilizados acima dos 80 %, refletindo ganhos relevantes de eficiência confirmados por melhorias simultâneas na disponibilidade, performance e qualidade. O estudo e
desenvolvimento do manipulador cartesiano evidenciaram a viabilidade de automatizar a extração e separação de peças, com elevada rigidez estrutural e impacto direto na redução de desperdício e aumento da segurança do processo. No corte elétrico de cabos, a comparação entre diferentes tipos de elétrodos permitiu identificar a opção mais adequada em termos de durabilidade, qualidade de corte e consumo energético. Em conjunto, os contributos obtidos reforçam a importância da automatização e da melhoria contínua na indústria automóvel, oferecendo soluções replicáveis que potenciam a competitividade da empresa e constituem um avanço relevante no domínio da gestão e engenharia industrial. Como trabalhos futuros, destaca-se a implementação do manipulador cartesiano na máquina de injeção Zhafir, a recolha de dados de longo prazo sobre desgaste e qualidade do corte elétrico, e a expansão das metodologias aplicadas a outras linhas e processos, integrando o projeto num sistema contínuo de monitorização e automação progressiva.
The automotive industry plays a central role in the global economy and is characterized by high demands in terms of efficiency, quality, and sustainability. In this context, this dissertation aims to propose and evaluate improvement solutions for the production processes of Ficocables, with a particular focus on the X Line, the electric cutting of metallic cables, and the design of a Cartesian manipulator to support plastic injection operations. The methodology adopted was Design Science Research, allowing the identification of specific problems, the development of artifacts, and the validation of solutions through simulations, experimental tests, and performance indicator analysis. On the X Line, the results showed an increase in the OEE from an average of 42% to stabilized values above 80%, reflecting significant efficiency gains confirmed by simultaneous improvements in availability, performance, and quality. The study and development of the Cartesian manipulator demonstrated the feasibility of automating the extraction and separation of parts, with high structural rigidity and a direct impact on waste reduction and process safety. In the electric cable cutting process, the comparison between different types of electrodes made it possible to identify the most suitable option in terms of durability, cutting quality, and energy consumption. Overall, the results reinforce the importance of automation and continuous improvement in the automotive industry, offering replicable solutions that enhance the company’s competitiveness and represent a relevant advancement in the field of industrial engineering and management. As future work, it is proposed to implement the Cartesian manipulator on the Zhafir injection machine, collect long-term data on electrode wear and cutting quality, and expand the applied methodologies to other lines and processes, integrating the project into a continuous monitoring and progressive automation system.
The automotive industry plays a central role in the global economy and is characterized by high demands in terms of efficiency, quality, and sustainability. In this context, this dissertation aims to propose and evaluate improvement solutions for the production processes of Ficocables, with a particular focus on the X Line, the electric cutting of metallic cables, and the design of a Cartesian manipulator to support plastic injection operations. The methodology adopted was Design Science Research, allowing the identification of specific problems, the development of artifacts, and the validation of solutions through simulations, experimental tests, and performance indicator analysis. On the X Line, the results showed an increase in the OEE from an average of 42% to stabilized values above 80%, reflecting significant efficiency gains confirmed by simultaneous improvements in availability, performance, and quality. The study and development of the Cartesian manipulator demonstrated the feasibility of automating the extraction and separation of parts, with high structural rigidity and a direct impact on waste reduction and process safety. In the electric cable cutting process, the comparison between different types of electrodes made it possible to identify the most suitable option in terms of durability, cutting quality, and energy consumption. Overall, the results reinforce the importance of automation and continuous improvement in the automotive industry, offering replicable solutions that enhance the company’s competitiveness and represent a relevant advancement in the field of industrial engineering and management. As future work, it is proposed to implement the Cartesian manipulator on the Zhafir injection machine, collect long-term data on electrode wear and cutting quality, and expand the applied methodologies to other lines and processes, integrating the project into a continuous monitoring and progressive automation system.
Description
Keywords
Automotive Industry Automation Robotization Continuous Improvement Electric Cable Cutting Cartesian Robot Indústria automóvel Automatização Robotização Melhoria contínua Corte elétrico de cabos Robô cartesiano
