Repository logo
 
Publication

Constrained Adversarial Learning and its applicability to Automated Software Testing: a systematic review

dc.contributor.authorVitorino, João
dc.contributor.authorDias, Tiago
dc.contributor.authorFonseca, Tiago
dc.contributor.authorMaia, Eva
dc.contributor.authorPraça, Isabel
dc.date.accessioned2023-09-05T14:12:55Z
dc.date.available2023-09-05T14:12:55Z
dc.date.issued2023
dc.description.abstractEvery novel technology adds hidden vulnerabilities ready to be exploited by a growing number of cyber-attacks. Automated software testing can be a promising solution to quickly analyze thousands of lines of code by generating and slightly modifying function-specific testing data to encounter a multitude of vulnerabilities and attack vectors. This process draws similarities to the constrained adversarial examples generated by adversarial learning methods, so there could be significant benefits to the integration of these methods in automated testing tools. Therefore, this systematic review is focused on the current state-of-the-art of constrained data generation methods applied for adversarial learning and software testing, aiming to guide researchers and developers to enhance testing tools with adversarial learning methods and improve the resilience and robustness of their digital systems. The found constrained data generation applications for adversarial machine learning were systematized, and the advantages and limitations of approaches specific for software testing were thoroughly analyzed, identifying research gaps and opportunities to improve testing tools with adversarial attack methods.pt_PT
dc.description.sponsorshipThe present work was partially supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), within project "Cybers SeC IP" (NORTE-01-0145-FEDER- 000044). This work has also received funding from UIDB/00760/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.doi10.48550/arXiv.2303.07546pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/23454
dc.language.isoengpt_PT
dc.relationNORTE-01-0145-FEDER- 000044pt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectSoftware developmentpt_PT
dc.subjectConstrained data generationpt_PT
dc.subjectAdversarial attackspt_PT
dc.subjectMachine learningpt_PT
dc.titleConstrained Adversarial Learning and its applicability to Automated Software Testing: a systematic reviewpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00760%2F2020/PT
oaire.citation.titleInformation and Software Technologypt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMachado Vitorino
person.familyNameDias
person.familyNameCaló Fonseca
person.familyNameMaia
person.familyNamePraça
person.givenNameJoão Pedro
person.givenNameTiago Fontes
person.givenNameTiago Carlos
person.givenNameEva
person.givenNameIsabel
person.identifierHlqCxhoAAAAJ
person.identifier2140741
person.identifier2435478
person.identifier299522
person.identifier.ciencia-id3312-592F-B628
person.identifier.ciencia-idF510-7CAD-42CD
person.identifier.ciencia-id9210-B002-2CB5
person.identifier.ciencia-id4F14-EF83-C4B9
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.orcid0000-0002-4968-3653
person.identifier.orcid0000-0002-1693-7872
person.identifier.orcid0000-0002-5592-3107
person.identifier.orcid0000-0002-8075-531X
person.identifier.orcid0000-0002-2519-9859
person.identifier.ridK-8430-2014
person.identifier.scopus-author-id57579914600
person.identifier.scopus-author-id57355096600
person.identifier.scopus-author-id22734900800
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication4435bb64-8a77-407b-ba18-4833d26e72ae
relation.isAuthorOfPublicationdd54c1b5-5e59-4f2d-8018-15d06880f4bb
relation.isAuthorOfPublication83a42983-837d-4db9-8144-2387bc338bf3
relation.isAuthorOfPublication47a108c4-cf8a-46f3-8954-90624174e8fc
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublication.latestForDiscovery47a108c4-cf8a-46f3-8954-90624174e8fc
relation.isProjectOfPublicationdb3e2edb-b8af-487a-b76a-f6790ac2d86e
relation.isProjectOfPublication.latestForDiscoverydb3e2edb-b8af-487a-b76a-f6790ac2d86e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART3_GECAD_JVitorino_2023.pdf
Size:
507.32 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: