Repository logo
 
Publication

A Mixed Binary Linear Programming Model for Optimal Energy Management of Smart Buildings

dc.contributor.authorForoozandeh, Zahra
dc.contributor.authorRamos, Sérgio
dc.contributor.authorSoares, João
dc.contributor.authorLezama, Fernando
dc.contributor.authorVale, Zita
dc.contributor.authorGomes, António
dc.contributor.authorJoench, Rodrigo L.
dc.date.accessioned2021-01-28T16:20:31Z
dc.date.available2021-01-28T16:20:31Z
dc.date.issued2020
dc.description.abstractEfficient alternatives in energy production and consumption are constantly being investigated and conducted by increasingly strict policies. Buildings have a significant influence on electricity consumption, and their management may contribute to the sustainability of the electricity sector. Additionally, with growing incentives in the distributed generation (DG) and electric vehicle (EV) industries, it is believed that smart buildings (SBs) can play a key role in sustainability goals. In this work, an energy management system is developed to reduce the power demands of a residential building, considering the flexibility of the contracted power of each apartment. In order to balance the demand and supply, the electrical power provided by the external grid is supplemented by microgrids such as battery energy storage systems (BESS), EVs, and photovoltaic (PV) generation panels. Here, a mixed binary linear programming formulation (MBLP) is proposed to optimize the scheduling of the EVs charge and discharge processes and also those of BESS, in which the binary decision variables represent the charging and discharging of EVs/BESS in each period. In order to show the efficiency of the model, a case study involving three scenarios and an economic analysis are considered. The results point to a 65% reduction in peak load consumption supplied by an external power grid and a 28.4% reduction in electricity consumption costs.pt_PT
dc.description.sponsorshipThis research was funded by FEDER Funds through COMPETE program and from National Fundsthrough FCT under the project UID/EEA/00760/2019 and BENEFICE – PTDC/EEI-EEE/29070/2017.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/en13071719pt_PT
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/10400.22/16787
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/13/7/1719pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDistributed generationpt_PT
dc.subjectEnergy Resources Managementpt_PT
dc.subjectOptimizationpt_PT
dc.subjectMixed binary mixed binary linear programmingpt_PT
dc.subjectSmart buildingspt_PT
dc.titleA Mixed Binary Linear Programming Model for Optimal Energy Management of Smart Buildingspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F29070%2F2017/PT
oaire.citation.issue7pt_PT
oaire.citation.startPage1719pt_PT
oaire.citation.titleEnergiespt_PT
oaire.citation.volume13pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream9471 - RIDTI
person.familyNameCarvalho Ramos
person.familyNameSoares
person.familyNameLezama
person.familyNameVale
person.givenNameSérgio Filipe
person.givenNameJoão
person.givenNameFernando
person.givenNameZita
person.identifier1043580
person.identifier632184
person.identifier.ciencia-id6D1F-C495-6660
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-idE31F-56D6-1E0F
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-1120-5656
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0001-8638-8373
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-6945-2017
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id36810077500
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationf01a54a0-e6c0-4cf3-afd8-5a664bbac7b4
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublication6a55317b-92c2-404f-8542-c7a73061cc9b
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryf01a54a0-e6c0-4cf3-afd8-5a664bbac7b4
relation.isProjectOfPublication9b771c00-8c2c-4226-b06d-e33ef11f0d32
relation.isProjectOfPublication8d1a5ff3-f6eb-476b-9056-3b240c11a69f
relation.isProjectOfPublication.latestForDiscovery9b771c00-8c2c-4226-b06d-e33ef11f0d32

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_GECAD_energies-13_2020.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format