Name: | Description: | Size: | Format: | |
---|---|---|---|---|
18.79 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
The growth in the electrical demand by most countries around the world requires bigger and more complex energy systems, which leads to the requirement of having even more monitoring, inspection and maintenance of those systems. To respond to this need, inspection methods based on Unmanned Aerial Vehicles (UAV) have emerged which, when equipped with the appropriate sensors, allow a greater reduction of costs and risks and an increase in efficiency and effectiveness compared to traditional methods, such as inspection with foot patrols or helicopter-assisted. To make the inspection process more autonomous and reliable, most of the methods apply visual detection methods that use highly complex Deep Learning based algorithms and that require a very large computational power. This dissertation intends to present a system for inspection of electrical assets, able to be integrated onboard the UAV, based on Deep Learning, which allows to collect visual samples grouped and aggregated for each electrical asset detected. To this end, a perception system capable of detecting electrical insulators or structures, such as poles or transmission towers, was developed, using the Movidius Neural Compute Stick portable platform that is capable of processing lightweight object detection Convolutional Neural Networks, allowing a modular, low-cost system that meets real-time processing requirements. In addition to this perception system, an electrical asset monitoring system has been implemented that allows tracking and mapping each asset throughout the inspection process, based on the previous system’s detections and a UAV navigation system. Finally, an autonomous inspection system is proposed, which consists of a set of trajectories that allow an efficient application of the monitoring system along a power line, through the mapping of structures and the gathering of insulator samples around that structure.
O grande crescimento da exigência elétrica pela maioria dos países por todo o mundo, requer que os sistemas de energia sejam maiores e mais complexos, o que conduz a uma maior necessidade de monitorização, inspeção e manutenção desses sistemas. Para responder a esta necessidade, surgiram métodos de inspeção baseados em Veículos Aéreos Não Tripulados (VANT) que, quando equipados com os sensores apropriados, permitem uma maior redução de custos e riscos e um grande aumento de eficiência e eficácia em comparação com os métodos tradicionais, como a inspeção com patrulhas pedonais ou assistida por helicóptero. Para tornar processo de inspeção mais autónomo e confiável, a maioria dos métodos realiza método de deteção visuais que utilizam algoritmos baseados em Deep Learning de elevada complexidade e que requerem um poder computacional muito grande. Nesta dissertação pretende-se apresentar um sistema de inspeção de ativos elétricos, para integração em VANTs, baseado em Apredizagem Profunda, que permite recolher amostras visuais agrupadas e agregadas por cada ativo elétrico detetado. Para tal foi desenvolvido um sistema de perceção capaz de detetar isoladores elétricos ou estruturas, como postes ou torres de transmissão, com recurso `a plataforma portátil Movidius Neural Compute Stick que ´e capaz de processar Redes Neuronais Convolucionais leves de deteção de objetos, permitindo assim um sistema modular, de baixo custo e que cumpre requisitos de processamento em tempo real. Para além deste sistema de perceção, foi implementado um sistema de monitorização de ativos elétricos que permite seguir e mapear cada ativo ao longo do processo de inspeção, com base nas deteções do sistema anterior e no sistema de navegação do VANT. Por fim, ´e proposto um sistema de inspeção autónomo que consiste num conjunto de trajetórias que permitem aplicar o sistema de monitorização de ativos elétricos ao longo de uma linha elétrica, através do mapeamento de estruturas e na recolha de amostras de isoladores em torno dessa estrutura.
O grande crescimento da exigência elétrica pela maioria dos países por todo o mundo, requer que os sistemas de energia sejam maiores e mais complexos, o que conduz a uma maior necessidade de monitorização, inspeção e manutenção desses sistemas. Para responder a esta necessidade, surgiram métodos de inspeção baseados em Veículos Aéreos Não Tripulados (VANT) que, quando equipados com os sensores apropriados, permitem uma maior redução de custos e riscos e um grande aumento de eficiência e eficácia em comparação com os métodos tradicionais, como a inspeção com patrulhas pedonais ou assistida por helicóptero. Para tornar processo de inspeção mais autónomo e confiável, a maioria dos métodos realiza método de deteção visuais que utilizam algoritmos baseados em Deep Learning de elevada complexidade e que requerem um poder computacional muito grande. Nesta dissertação pretende-se apresentar um sistema de inspeção de ativos elétricos, para integração em VANTs, baseado em Apredizagem Profunda, que permite recolher amostras visuais agrupadas e agregadas por cada ativo elétrico detetado. Para tal foi desenvolvido um sistema de perceção capaz de detetar isoladores elétricos ou estruturas, como postes ou torres de transmissão, com recurso `a plataforma portátil Movidius Neural Compute Stick que ´e capaz de processar Redes Neuronais Convolucionais leves de deteção de objetos, permitindo assim um sistema modular, de baixo custo e que cumpre requisitos de processamento em tempo real. Para além deste sistema de perceção, foi implementado um sistema de monitorização de ativos elétricos que permite seguir e mapear cada ativo ao longo do processo de inspeção, com base nas deteções do sistema anterior e no sistema de navegação do VANT. Por fim, ´e proposto um sistema de inspeção autónomo que consiste num conjunto de trajetórias que permitem aplicar o sistema de monitorização de ativos elétricos ao longo de uma linha elétrica, através do mapeamento de estruturas e na recolha de amostras de isoladores em torno dessa estrutura.
Description
Keywords
Electrical Assets Inspection Deep Learning Object Detection Multi-Object Tracking UAV Inspeção de Ativos Elétricos Deteção de Objetos Seguimento de Múltiplos Objetos VANT