| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 8.53 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Há uns anos atrás, os caminhos ajudavam a unir populações, a evoluir cidades ou a vencer guerras, mas as vias de acesso tinham de estar em boas condições. Hoje, com os veículos a circular nas autoestradas e estradas, é obrigatório mantê-las no melhor estado possível. Uma fenda pode causar danos num carro ou num pior cenário, provocar acidentes. A deteção de fissuras é um processo essencial na manutenção das estradas para evitar a degradação. Atualmente muitas empresas fazem essas inspeções visuais no campo com os seus colaboradores. Algumas empresas usam outros tipos de sistemas para detetar anomalias, assim como, imagens / vídeos para catalogar esses danos e agir, impedindo que piorem. Para ajudar a reduzir o trabalho na deteção, é essencial criar um método automatizado para identificar e catalogar essas anomalias. O objetivo passa pelo uso de novas tecnologias para esse fim. Com a introdução da inteligência artificial, podemos desenvolver novas formas de detetar essas anomalias, com uma deteção rápida, precisa e com alguns benefícios, tal como, rentabilizar o tempo para ajudar os trabalhadores a concluir outras tarefas e, a segurança, se a análise for efetuada no campo. No entanto, é preciso fazer alguns estudos e trabalhos sobre esta matéria, porque não se trata apenas de uma deteção, mas de um conjunto de outros fatores nas autoestradas
Years ago, a path could help bring populations together, helping to evolve cities or win wars, but the footways should be in good condition. Today with the vehicles rushing every minute in highways and roads, it is mandatory for many companies to maintain the pavements in the best state as possible. A crack can cause degradation in the car or the worst scenario, can provoke accidents. The crack detection is an essential process in road maintenance, to avoid degradation. At the moment, many companies do this inspection in the field with their collaborators, and other companies use another types of systems to detect anomalies. For that, they use images/videos to catalog such damages to take action over it, preventing from getting worst. To help reduce the work detection, it is essential to create an automated method to identify and to catalogue those anomalies. The objective goes by, the use of new technologies for this purpose. With the entry of artificial intelligence, we can develop new ways to detect these anomalies, in such speed and precise detection that will bring many benefits, such as, more rentable time to help workers complete other tasks, and safety. However, it needs some studies and work in this subject, because it is not only about the detection but other all factors around the highways.
Years ago, a path could help bring populations together, helping to evolve cities or win wars, but the footways should be in good condition. Today with the vehicles rushing every minute in highways and roads, it is mandatory for many companies to maintain the pavements in the best state as possible. A crack can cause degradation in the car or the worst scenario, can provoke accidents. The crack detection is an essential process in road maintenance, to avoid degradation. At the moment, many companies do this inspection in the field with their collaborators, and other companies use another types of systems to detect anomalies. For that, they use images/videos to catalog such damages to take action over it, preventing from getting worst. To help reduce the work detection, it is essential to create an automated method to identify and to catalogue those anomalies. The objective goes by, the use of new technologies for this purpose. With the entry of artificial intelligence, we can develop new ways to detect these anomalies, in such speed and precise detection that will bring many benefits, such as, more rentable time to help workers complete other tasks, and safety. However, it needs some studies and work in this subject, because it is not only about the detection but other all factors around the highways.
Description
Keywords
Patologias Autoestradas Inteligência Artificial CNN Machine Learning Pathologies Highways Artificial Intelligence
