Repository logo
 
Publication

Adaptative Perturbation Patterns: Realistic Adversarial Learning for Robust Intrusion Detection

dc.contributor.authorVitorino, João
dc.contributor.authorOliveira, Nuno
dc.contributor.authorPraça, Isabel
dc.date.accessioned2023-01-25T11:37:47Z
dc.date.available2023-01-25T11:37:47Z
dc.date.issued2022-03-08
dc.description.abstractAdversarial attacks pose a major threat to machine learning and to the systems that rely on it. In the cybersecurity domain, adversarial cyber-attack examples capable of evading detection are especially concerning. Nonetheless, an example generated for a domain with tabular data must be realistic within that domain. This work establishes the fundamental constraint levels required to achieve realism and introduces the Adaptative Perturbation Pattern Method (A2PM) to fulfill these constraints in a gray-box setting. A2PM relies on pattern sequences that are independently adapted to the characteristics of each class to create valid and coherent data perturbations. The proposed method was evaluated in a cybersecurity case study with two scenarios: Enterprise and Internet of Things (IoT) networks. Multilayer Perceptron (MLP) and Random Forest (RF) classifiers were created with regular and adversarial training, using the CIC-IDS2017 and IoT-23 datasets. In each scenario, targeted and untargeted attacks were performed against the classifiers, and the generated examples were compared with the original network traffic flows to assess their realism. The obtained results demonstrate that A2PM provides a scalable generation of realistic adversarial examples, which can be advantageous for both adversarial training and attacks.pt_PT
dc.description.sponsorshipThe present work has received funding from the European Union’s Horizon 2020 research and innovation program, under project SeCoIIA (grant agreement no. 871967). This work has also received funding from UIDP/00760/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/fi14040108pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/21851
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationSecure Collaborative Intelligent Industrial Assets
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://www.mdpi.com/1999-5903/14/4/108pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectRealistic adversarial examplespt_PT
dc.subjectAdversarial attackspt_PT
dc.subjectAdversarial robustnesspt_PT
dc.subjectMachine learningpt_PT
dc.subjectTabular datapt_PT
dc.subjectIntrusion detectionpt_PT
dc.titleAdaptative Perturbation Patterns: Realistic Adversarial Learning for Robust Intrusion Detectionpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleSecure Collaborative Intelligent Industrial Assets
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/871967/EU
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00760%2F2020/PT
oaire.citation.issue4pt_PT
oaire.citation.startPage108pt_PT
oaire.citation.titleFuture Internetpt_PT
oaire.citation.volume14pt_PT
oaire.fundingStreamH2020
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMachado Vitorino
person.familyNameOliveira
person.familyNamePraça
person.givenNameJoão Pedro
person.givenNameNuno
person.givenNameIsabel
person.identifierHlqCxhoAAAAJ
person.identifier299522
person.identifier.ciencia-id3312-592F-B628
person.identifier.ciencia-id3E1B-B728-9524
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.orcid0000-0002-4968-3653
person.identifier.orcid0000-0002-5030-7751
person.identifier.orcid0000-0002-2519-9859
person.identifier.ridK-8430-2014
person.identifier.scopus-author-id57579914600
person.identifier.scopus-author-id22734900800
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameEuropean Commission
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication4435bb64-8a77-407b-ba18-4833d26e72ae
relation.isAuthorOfPublicatione49f38bc-accb-44eb-8f49-7e7e555f34a5
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublication.latestForDiscoveryee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isProjectOfPublication50b4a014-9a9b-44b6-ae09-72173c0acae9
relation.isProjectOfPublication6eb94c83-adf9-4d9d-a75c-be95f44e3ca5
relation.isProjectOfPublication.latestForDiscovery6eb94c83-adf9-4d9d-a75c-be95f44e3ca5

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_GECAD_ICP_futureinternet_2022.pdf
Size:
3.62 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: