Publication
Adaptive learning in multiagent systems: a forecasting methodology based on error analysis
dc.contributor.author | Sousa, Tiago | |
dc.contributor.author | Pinto, Tiago | |
dc.contributor.author | Vale, Zita | |
dc.contributor.author | Praça, Isabel | |
dc.contributor.author | Morais, H. | |
dc.date.accessioned | 2013-04-18T10:52:23Z | |
dc.date.available | 2013-04-18T10:52:23Z | |
dc.date.issued | 2012 | |
dc.date.updated | 2013-04-12T11:28:27Z | |
dc.description.abstract | Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error. | por |
dc.identifier.doi | 10.1007/978-3-642-28762-6_42 | pt_PT |
dc.identifier.isbn | 978-3-642-28761-9 | |
dc.identifier.isbn | 978-3-642-28762-6 | |
dc.identifier.issn | 1867-5662 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/1395 | |
dc.language.iso | eng | por |
dc.publisher | Springer Berlin Heidelberg | por |
dc.relation.ispartofseries | Advances in Intelligent and Soft Computing; Vol. 156 | |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007/978-3-642-28762-6_42 | por |
dc.subject | Adaptive learning | por |
dc.subject | Electricity markets | por |
dc.subject | Error analysis | por |
dc.subject | Forecasting methods | por |
dc.subject | Information theory | por |
dc.subject | Multiagent systems | por |
dc.title | Adaptive learning in multiagent systems: a forecasting methodology based on error analysis | por |
dc.type | book part | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 357 | por |
oaire.citation.startPage | 349 | por |
oaire.citation.title | Highlights on practical applications of agents and multi-agent systems. 10th International Conference on Practical Applications of Agents and Multi-Agent Systems | por |
oaire.citation.volume | Vol. 156 | |
person.familyName | Pinto | |
person.familyName | Vale | |
person.familyName | Praça | |
person.givenName | Tiago | |
person.givenName | Zita | |
person.givenName | Isabel | |
person.identifier | R-000-T7J | |
person.identifier | 632184 | |
person.identifier | 299522 | |
person.identifier.ciencia-id | 2414-9B03-C4BB | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.ciencia-id | C710-4218-1BFF | |
person.identifier.orcid | 0000-0001-8248-080X | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.orcid | 0000-0002-2519-9859 | |
person.identifier.rid | T-2245-2018 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.rid | K-8430-2014 | |
person.identifier.scopus-author-id | 35219107600 | |
person.identifier.scopus-author-id | 7004115775 | |
person.identifier.scopus-author-id | 22734900800 | |
rcaap.rights | closedAccess | por |
rcaap.type | bookPart | por |
relation.isAuthorOfPublication | 8d58ddc0-1023-47c0-a005-129d412ce98d | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication | ee4ecacd-c6c6-41e8-bca1-21a60ff05f50 | |
relation.isAuthorOfPublication.latestForDiscovery | ff1df02d-0c0f-4db1-bf7d-78863a99420b |