Repository logo
 
Publication

Iridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocatalysis

dc.contributor.authorYu, Zhipeng
dc.contributor.authorSi, Chaowei
dc.contributor.authorLaGrow, Alec P.
dc.contributor.authorTai, Zhixin
dc.contributor.authorCaliebe, Wolfgang A.
dc.contributor.authorTayal, Akhil
dc.contributor.authorSampaio, Maria J.
dc.contributor.authorSousa, Juliana P. S.
dc.contributor.authorAmorim, Isilda
dc.contributor.authorAraujo, Ana
dc.contributor.authorMeng, Lijian
dc.contributor.authorFaria, Joaquim L.
dc.contributor.authorXu, Junyuan
dc.contributor.authorLi, Bo
dc.contributor.authorLiu, Lifeng
dc.date.accessioned2022-09-05T13:34:37Z
dc.date.embargo2031
dc.date.issued2022-07-18
dc.description.abstractDiatomic catalysts, particularly those with heteronuclear active sites, have recently attracted considerable attention for their advantages over single-atom catalysts in reactions involving multielectron transfers. Herein, we report bimetallic iridium−iron diatomic catalysts (IrFe−N−C) derived from metal−organic frameworks in a facile wet chemical synthesis followed by postpyrolysis. We use various advanced characterization techniques to comprehensively confirm the atomic dispersion of Ir and Fe on the nitrogen-doped carbon support and the presence of atomic pairs. The asobtained IrFe−N−C shows substantially higher electrocatalytic performance for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) when compared to the single-atom counterparts (i.e., Ir−N−C and Fe−N−C), revealing favorable bifunctionality. Consequently, IrFe−N−C is used as an air cathode in zinc− air batteries, which display much better performance than the batteries containing commercial Pt/C + RuO2 benchmark catalysts. Our synchrotron-based X-ray absorption spectroscopy experiments and density functional theory (DFT) calculations suggest that the IrFe dual atoms presumably exist in an IrFeN6 configuration where both Ir and Fe coordinates with four N atoms and two N atoms are shared by the IrN4 and FeN4 moieties. Furthermore, the Fe site contributes mainly to the ORR, while the Ir site plays a more important role in the OER. The dual-atom sites work synergistically, reducing the energy barrier of the rate-determining step and eventually boosting the reversible oxygen electrocatalysis. The IrFe−N−C catalysts hold great potential for use in various electrochemical energy storage and conversion devices.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1021/acscatal.2c01861pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/20798
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acscatal.2c01861pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/pt_PT
dc.subjectAtomically dispersed catalystpt_PT
dc.subjectIrFe diatomic active sitept_PT
dc.subjectOxygen electrocatalysispt_PT
dc.subjectOxygen reduction reactionpt_PT
dc.subjectOxygen evolution reactionpt_PT
dc.titleIridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocatalysispt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage9409pt_PT
oaire.citation.issue15pt_PT
oaire.citation.startPage9397pt_PT
oaire.citation.titleACS Catalysispt_PT
oaire.citation.volume12pt_PT
person.familyNameMeng
person.givenNameLijian
person.identifier236430
person.identifier.ciencia-idC31B-0091-BD12
person.identifier.orcid0000-0001-6071-3502
person.identifier.scopus-author-id7202236050
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationcb02ae05-0786-47ff-b480-2fde7ef93e0d
relation.isAuthorOfPublication.latestForDiscoverycb02ae05-0786-47ff-b480-2fde7ef93e0d

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_DFI_LJM_2022.pdf
Size:
7.32 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: