Repository logo
 
Publication

Incentive-based demand response programs designed by asset-light retailers for day-ahead market

dc.contributor.authorGhazvini, Mohammad Ali F.
dc.contributor.authorFaria, Pedro
dc.contributor.authorRamos, Sérgio
dc.contributor.authorMorais, Hugo
dc.contributor.authorVale, Zita
dc.date.accessioned2015-05-07T10:18:24Z
dc.date.available2015-05-07T10:18:24Z
dc.date.issued2015-03
dc.description.abstractFollowing the deregulation experience of retail electricity markets in most countries, the majority of the new entrants of the liberalized retail market were pure REP (retail electricity providers). These entities were subject to financial risks because of the unexpected price variations, price spikes, volatile loads and the potential for market power exertion by GENCO (generation companies). A REP can manage the market risks by employing the DR (demand response) programs and using its' generation and storage assets at the distribution network to serve the customers. The proposed model suggests how a REP with light physical assets, such as DG (distributed generation) units and ESS (energy storage systems), can survive in a competitive retail market. The paper discusses the effective risk management strategies for the REPs to deal with the uncertainties of the DAM (day-ahead market) and how to hedge the financial losses in the market. A two-stage stochastic programming problem is formulated. It aims to establish the financial incentive-based DR programs and the optimal dispatch of the DG units and ESSs. The uncertainty of the forecasted day-ahead load demand and electricity price is also taken into account with a scenario-based approach. The principal advantage of this model for REPs is reducing the risk of financial losses in DAMs, and the main benefit for the whole system is market power mitigation by virtually increasing the price elasticity of demand and reducing the peak demand.por
dc.identifier.doi10.1016/j.energy.2015.01.090
dc.identifier.urihttp://hdl.handle.net/10400.22/5961
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevierpor
dc.relation.ispartofseriesEnergy;Vol. 82
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0360544215001140por
dc.subjectDemand responsepor
dc.subjectElectricity marketpor
dc.subjectFinancial riskpor
dc.subjectMarket powerpor
dc.subjectRetail marketpor
dc.subjectStochastic programmingpor
dc.titleIncentive-based demand response programs designed by asset-light retailers for day-ahead marketpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage799por
oaire.citation.startPage786por
oaire.citation.titleEnergypor
oaire.citation.volume82por
person.familyNameFaria
person.familyNameCarvalho Ramos
person.familyNameMorais
person.familyNameVale
person.givenNamePedro
person.givenNameSérgio Filipe
person.givenNameHugo
person.givenNameZita
person.identifier80878
person.identifier632184
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id6D1F-C495-6660
person.identifier.ciencia-id2010-D878-271B
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-1120-5656
person.identifier.orcid0000-0001-5906-4744
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id21834170800
person.identifier.scopus-author-id7004115775
rcaap.rightsclosedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationf01a54a0-e6c0-4cf3-afd8-5a664bbac7b4
relation.isAuthorOfPublicationb159f8c9-5ee1-444e-b890-81242ee0738e
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryb159f8c9-5ee1-444e-b890-81242ee0738e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_MGhazvini_2015_GECAD.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: