Logo do repositório
 
Miniatura indisponível
Publicação

Probabilistic Egomotion for Stereo Visual Odometry

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
ART_EduardoSilva_2015_LSA.pdf6.6 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.

Descrição

Palavras-chave

Stereo vision Visual Odometry Egomotion Visual Navigation

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Springer

Licença CC

Métricas Alternativas