Name: | Description: | Size: | Format: | |
---|---|---|---|---|
3.89 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A regeneração óssea representa um desafio clínico, devido à limitada capacidade de auto-regeneração
do osso para defeitos de dimensões críticas, e aos resultados por vezes não muito satisfatórios dos
atuais métodos de tratamento como a utilização de enxertos ósseos, que estão associados a elevados
custos e potenciais riscos para a saúde. Com a crescente prevalência de doenças relacionadas com o
osso e de incidentes que conduzem a defeitos ósseos, há uma necessidade de desenvolver soluções
mais eficazes e económicas para enfrentar estes desafios.
Este estudo investiga a potencial utilização de microesferas ricas em estrôncio para a regeneração
óssea, tendo em vista a sua aplicação direta ou como componentes de um sistema híbrido injetável.
As partículas sendo esféricas, têm uma forma mais adequada para implantação do que partículas
irregulares devido às suas características únicas de empacotamento com poros uniformes entre as
partículas. Foram estudados três tipos de microesferas com diferentes composições: hidroxiapatite
(HApCa), hidroxiapatite dopada com estrôncio (HApSr) e fosfato de estrôncio (SrPhos). Procedeu se também ao estudo de fibras de basalto (BF) com o objetivo de estas serem utilizadas como material
de reforço estrutural na produção de scaffolds para aplicações osteoarticulares. Foram utilizadas
diferentes técnicas de caraterização de materiais para avaliar as propriedades morfológicas e físico químicas dos biomateriais em estudo, incluindo a micro tomografia computorizada (micro-CT), a
microscopia eletrónica de varrimento (SEM), a espetroscopia de raios X por dispersão de energia
(EDS) e a espectroscopia de infravermelho com transformada de Fourier (FTIR), tendo sido também
realizadas medições do potencial zeta. Foram igualmente realizados para todos os materiais em
estudo, testes de biocompatibilidade com as linhas celulares MC3T3 e RAW 264.7.
As microesferas com estrôncio na sua composição (HApSr e SrPhos) apresentaram melhores
resultados em termos de atividade metabólica e viabilidade celular, em comparação com as
microesferas sem estrôncio (HApCa). Por sua vez, as fibras de basalto não apresentaram efeitos
adversos nas células, como demonstrado pelos resultados dos testes de biocompatibilidade. A
microscopia confocal e o SEM confirmaram a adesão das células às microesferas e às fibras de
basalto, não tendo sido observada qualquer diferença significativa na adesão das células entre as
diferentes microesferas.
Estes resultados confirmam o efeito benéfico que o estrôncio poderá ter em aplicações de regeneração
óssea e contribuem para a validação da possibilidade de utilização de microesferas de fosfato de
estrôncio como um novo biomaterial para esse fim. Os resultados obtidos sugerem também que as
fibras de basalto, ainda muito pouco exploradas como biomaterial, poderão constituir um reforço
mecânico de grande potencial biológico para ser usado em scaffolds para regeneração óssea.
Bone regeneration represents a clinical challenge, due to the limited self-regeneration capacity of bone for defects of critical dimensions, and the sometimes not very satisfactory results of current treatment methods, such as the use of bone grafts, which are associated with high costs and potential health risks. With a growing prevalence of bone-related diseases and incidents leading to bone defects, there is a pressing need for more effective and cost-efficient solutions to address these challenges. This study investigates the potential use of strontium-rich microspheres for bone regeneration, having in mind its direct application, or as components of an injectable hybrid system. The particles being spherical have a more suitable shape than irregular granules for implantation because of their unique packing characteristics with uniform pores between particles. Three types of microspheres with different compositions were studied: hydroxyapatite (HApCa), strontium-doped hydroxyapatite (HApSr), and strontium phosphate (SrPhos). Also, basalt fibers (BF) were investigated, with the aim of using them as structural reinforcement material for the production of scaffolds for osteoarticular applications. Different material characterization techniques were employed to assess the morphological and physicochemical properties of the biomaterials under study, including micro computed tomography (micro-CT), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), and zeta potential measurements. Biocompatibility tests were also conducted on all materials with the MC3T3 and RAW 264.7 cell lines. Strontium-containing microspheres (HApSr and SrPhos) showed enhanced results in terms of cell metabolic activity and viability, compared to strontium-free microspheres (HApCa). Additionally, basalt fibers exhibited no adverse effects on cells, as demonstrated by favorable results from the biocompatibility tests. Confocal microscopy and SEM confirmed cell adhesion to both microspheres and basalt fibers, with no significant difference observed in cell adhesion among different microspheres. These results confirm the beneficial effect that strontium may have in bone regeneration applications and validate the potential interest of strontium phosphate microspheres as a new biomaterial for this purpose. The obtained results also suggest that basalt fibers, a material still relatively unexplored as a biomaterial, could represent a mechanically strong reinforcement with significant biological potential for use in scaffolds for bone regeneration.
Bone regeneration represents a clinical challenge, due to the limited self-regeneration capacity of bone for defects of critical dimensions, and the sometimes not very satisfactory results of current treatment methods, such as the use of bone grafts, which are associated with high costs and potential health risks. With a growing prevalence of bone-related diseases and incidents leading to bone defects, there is a pressing need for more effective and cost-efficient solutions to address these challenges. This study investigates the potential use of strontium-rich microspheres for bone regeneration, having in mind its direct application, or as components of an injectable hybrid system. The particles being spherical have a more suitable shape than irregular granules for implantation because of their unique packing characteristics with uniform pores between particles. Three types of microspheres with different compositions were studied: hydroxyapatite (HApCa), strontium-doped hydroxyapatite (HApSr), and strontium phosphate (SrPhos). Also, basalt fibers (BF) were investigated, with the aim of using them as structural reinforcement material for the production of scaffolds for osteoarticular applications. Different material characterization techniques were employed to assess the morphological and physicochemical properties of the biomaterials under study, including micro computed tomography (micro-CT), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), and zeta potential measurements. Biocompatibility tests were also conducted on all materials with the MC3T3 and RAW 264.7 cell lines. Strontium-containing microspheres (HApSr and SrPhos) showed enhanced results in terms of cell metabolic activity and viability, compared to strontium-free microspheres (HApCa). Additionally, basalt fibers exhibited no adverse effects on cells, as demonstrated by favorable results from the biocompatibility tests. Confocal microscopy and SEM confirmed cell adhesion to both microspheres and basalt fibers, with no significant difference observed in cell adhesion among different microspheres. These results confirm the beneficial effect that strontium may have in bone regeneration applications and validate the potential interest of strontium phosphate microspheres as a new biomaterial for this purpose. The obtained results also suggest that basalt fibers, a material still relatively unexplored as a biomaterial, could represent a mechanically strong reinforcement with significant biological potential for use in scaffolds for bone regeneration.
Description
Keywords
Strontium microspheres bone regeneration basalt fibers