Name: | Description: | Size: | Format: | |
---|---|---|---|---|
10.45 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Additive manufacturing (AM) can be seen as a disruptive process that builds complex components layer upon layer. Two of its distinct technologies are Selective Laser Melting (SLM) and Electron Beam Melting (EBM), which are powder bed fusion processes that create metallic parts with the aid of a beam source. Two of the most studied and manufactured superalloys in metal AM are the Inconel 718 (IN718) and the Ti-6Al-4V. The former is commonly employed in the marine, nuclear power plants, gas turbines, and aerospace field due to its capacity of retaining good mechanical properties at high temperatures, while the latter is often used in the aerospace field due to its low density and high melting point, and in the biomedical area owing to its high corrosion resistance and excellent biocompatibility when in contact with tissues or bones of the human body. Nevertheless, the aforementioned alloys frequently require a post-processing heat treatment in order to enhance certain mechanical properties, modify the microstructure and reduce the residual stresses (RS), which are induced by thermal principles, as the gradient temperature is high because of the heating and thermal expansion upon the deposition of a new layer, and its subsequent cooling. Therefore, production errors in the components might occur due to geometrical distortion. Thus, it is mandatory to understand the expected orientation and magnitude of the RS in order to do accurate predictions of the final part properties. The initial goal of this dissertation was to evaluate the thermal treatment effect on the entrapment of IN718 powder in internal channels of laser beam powder beam fusion manufactured components. However, due to the current pandemic, Polito’s laboratories could only be used by researchers and PhD students. Having that constraint, I was advised, by Professor Francisco Silva, to write two review papers that would replace the experimental work of this thesis, being the first about residual stresses and heat treatments of Selective Laser Melted IN718 parts and the second about residual stresses and heat treatments of Electron Beam Melted and Selective Laser Melted Ti-6Al-4V components. From the first scientific paper one can conclude that the expected microstructure in the as-built state of the IN718 components is characterized by fine columnar grains and a saturated γ matrix with the presence of the Laves phase and carbides. This heterogeneous microstructure promotes unfavourable anisotropic mechanical properties, meaning that, for high and cyclic loads applications, heat treatments must be conducted. In addition, it was also shown that RS can be lowered by applying heat treatments and favourable printing parameters, i.e. high scanning speed and low laser power. Finally, from the second review paper, it can be concluded that that the expected asbuilt microstructure of the Ti–6Al–4V alloy is different in both manufacturing processes, mainly due to the distinct cooling rates. However, heat treatments can modify the microstructure, reduce RS, and increase the ductility, fatigue life, and hardness of the components. Furthermore, distinct post-treatments can induce compressive RS on the part’s surface, consequently enhancing the fatigue life.
A manufatura aditiva pode ser vista como um processo disruptivo que cria componentes complexos camada após camada. Duas das suas tecnologias distintas são o derretimento seletivo em laser e a fusão por feixe de eletrões, que são processos de fusão em cama de pó que criam peças metálicas com o auxílio de feixe laser e eletrões, respetivamente. Algumas das superligas mais estudadas e fabricadas na manufatura aditiva de metais são o Inconel 718 e o Ti-6Al-4V. O primeiro é normalmente utilizado na marinha, centrais nucleares, turbinas a gás e no campo aeroespacial devido à sua capacidade de reter boas propriedades mecânicas a altas temperaturas, enquanto o último é frequentemente usado no campo aeroespacial devido à sua baixa densidade e alto ponto de fusão, e na área biomédica pela sua alta resistência à corrosão e excelente biocompatibilidade quando em contato com tecidos ou ossos do corpo humano. No entanto, as peças feitas das ligas anteriormente citadas frequentemente requerem um tratamento térmico após fabricadas a fim de potencializar certas propriedades mecânicas, modificar a microestrutura e reduzir as tensões residuais, que são induzidas por princípios térmicos, uma vez que o gradiente de temperatura é alto devido ao aquecimento e expansão térmica mediante a deposição de uma nova camada e o seu posterior arrefecimento. Portanto, podem surgir componentes com erros dimensionais derivados da distorção geométrica. Assim, é obrigatório entender a orientação esperada e a magnitude das tensões residuais de modo a fazer previsões precisas das propriedades da peça final. O objetivo inicial desta dissertação era avaliar o efeito do tratamento térmico no aprisionamento do pó IN718 em canais internos de componentes fabricados por derretimento seletivo em laser. No entanto, devido à atual pandemia, os laboratórios de Polito só podiam ser usados por investigadores e alunos de doutoramento. Tendo essa restrição, fui aconselhado, pelo Professor Francisco Silva, a escrever dois artigos de revisão bibliográfica que iriam substituir o trabalho experimental desta tese, sendo o primeiro sobre tensões residuais e tratamentos térmicos de peças de IN718 produzidas por derretimento seletivo em laser, e o segundo sobre tensões residuais e tratamentos térmicos de componentes de Ti-6Al-4V fabricados por fusão de feixe de eletrões e derretimento seletivo em laser. Do primeiro artigo científico pode-se concluir que a microestrutura esperada no estado as-built dos componentes do IN718 é caracterizada por grãos colunares finos e uma matriz γ saturada com a presença da fase Laves e carbonetos. Essa microestrutura heterogénea promove propriedades mecânicas anisotrópicas desfavoráveis, fazendo com que, para aplicações com cargas elevadas e cíclicas, sejam realizados tratamentos térmicos. Além disso, também foi mostrado que as tensões residuais podem ser reduzidas pela aplicação de tratamentos térmicos e parâmetros de impressão favoráveis, ou seja, alta velocidade de scan e baixa potência do laser. Finalmente, a partir do segundo artigo de revisão, pode concluir-se que a microestrutura as-built esperada da liga Ti–6Al–4V é diferente em ambas as tecnologias de fabrico, principalmente devido às distintas taxas de arrefecimento das mesmas. No entanto, os tratamentos térmicos podem modificar a microestrutura, reduzir as tensões residuais, aumentar a ductilidade bem como a vida à fadiga e dureza dos componentes. Além disso, pós-processamentos distintos podem induzir tensões residuais compressivas na superfície das peças e, consequentemente, aumentar a vida à fadiga das mesmas.
A manufatura aditiva pode ser vista como um processo disruptivo que cria componentes complexos camada após camada. Duas das suas tecnologias distintas são o derretimento seletivo em laser e a fusão por feixe de eletrões, que são processos de fusão em cama de pó que criam peças metálicas com o auxílio de feixe laser e eletrões, respetivamente. Algumas das superligas mais estudadas e fabricadas na manufatura aditiva de metais são o Inconel 718 e o Ti-6Al-4V. O primeiro é normalmente utilizado na marinha, centrais nucleares, turbinas a gás e no campo aeroespacial devido à sua capacidade de reter boas propriedades mecânicas a altas temperaturas, enquanto o último é frequentemente usado no campo aeroespacial devido à sua baixa densidade e alto ponto de fusão, e na área biomédica pela sua alta resistência à corrosão e excelente biocompatibilidade quando em contato com tecidos ou ossos do corpo humano. No entanto, as peças feitas das ligas anteriormente citadas frequentemente requerem um tratamento térmico após fabricadas a fim de potencializar certas propriedades mecânicas, modificar a microestrutura e reduzir as tensões residuais, que são induzidas por princípios térmicos, uma vez que o gradiente de temperatura é alto devido ao aquecimento e expansão térmica mediante a deposição de uma nova camada e o seu posterior arrefecimento. Portanto, podem surgir componentes com erros dimensionais derivados da distorção geométrica. Assim, é obrigatório entender a orientação esperada e a magnitude das tensões residuais de modo a fazer previsões precisas das propriedades da peça final. O objetivo inicial desta dissertação era avaliar o efeito do tratamento térmico no aprisionamento do pó IN718 em canais internos de componentes fabricados por derretimento seletivo em laser. No entanto, devido à atual pandemia, os laboratórios de Polito só podiam ser usados por investigadores e alunos de doutoramento. Tendo essa restrição, fui aconselhado, pelo Professor Francisco Silva, a escrever dois artigos de revisão bibliográfica que iriam substituir o trabalho experimental desta tese, sendo o primeiro sobre tensões residuais e tratamentos térmicos de peças de IN718 produzidas por derretimento seletivo em laser, e o segundo sobre tensões residuais e tratamentos térmicos de componentes de Ti-6Al-4V fabricados por fusão de feixe de eletrões e derretimento seletivo em laser. Do primeiro artigo científico pode-se concluir que a microestrutura esperada no estado as-built dos componentes do IN718 é caracterizada por grãos colunares finos e uma matriz γ saturada com a presença da fase Laves e carbonetos. Essa microestrutura heterogénea promove propriedades mecânicas anisotrópicas desfavoráveis, fazendo com que, para aplicações com cargas elevadas e cíclicas, sejam realizados tratamentos térmicos. Além disso, também foi mostrado que as tensões residuais podem ser reduzidas pela aplicação de tratamentos térmicos e parâmetros de impressão favoráveis, ou seja, alta velocidade de scan e baixa potência do laser. Finalmente, a partir do segundo artigo de revisão, pode concluir-se que a microestrutura as-built esperada da liga Ti–6Al–4V é diferente em ambas as tecnologias de fabrico, principalmente devido às distintas taxas de arrefecimento das mesmas. No entanto, os tratamentos térmicos podem modificar a microestrutura, reduzir as tensões residuais, aumentar a ductilidade bem como a vida à fadiga e dureza dos componentes. Além disso, pós-processamentos distintos podem induzir tensões residuais compressivas na superfície das peças e, consequentemente, aumentar a vida à fadiga das mesmas.
Description
Keywords
Additive Manufacturing Heat Treatments Residual Stresses Powder Bed Fusion Selective Laser Melting Electron Beam Melting Inconel 718 Ti-6Al-4V Manufatura Aditiva Tratamentos Térmicos Tensões Residuais Fusão em Cama de Pó Derretimento Seletivo em Laser Fusão de Feixe de Eletrões Inconel 718 Ti-6Al-4V