Publication
Strategic bidding methodology for electricity markets using adaptive learning
dc.contributor.author | Pinto, Tiago | |
dc.contributor.author | Vale, Zita | |
dc.contributor.author | Rodrigues, Fátima | |
dc.contributor.author | Morais, H. | |
dc.contributor.author | Praça, Isabel | |
dc.date.accessioned | 2013-05-09T15:26:58Z | |
dc.date.available | 2013-05-09T15:26:58Z | |
dc.date.issued | 2011 | |
dc.date.updated | 2013-04-12T17:05:33Z | |
dc.description.abstract | The very particular characteristics of electricity markets, require deep studies of the interactions between the involved players. MASCEM is a market simulator developed to allow studying electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is implemented as a multiagent system, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. This paper also presents a methodology to define players’ models based on the historic of their past actions, interpreting how their choices are affected by past experience, and competition. | por |
dc.identifier.doi | 10.1007/978-3-642-21827-9_50 | pt_PT |
dc.identifier.isbn | 978-3-642-21826-2 | |
dc.identifier.isbn | 978-3-642-21827-9 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/1530 | |
dc.language.iso | eng | por |
dc.publisher | Springer Berlin Heidelberg | por |
dc.relation.ispartofseries | Lecture Notes in Computer Science; Vol. 6704 | |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007%2F978-3-642-21827-9_50 | |
dc.subject | Adaptive learning | por |
dc.subject | Electricity markets | por |
dc.subject | Forecasting methods | por |
dc.subject | Intelligent agents | por |
dc.subject | Multiagent systems | por |
dc.title | Strategic bidding methodology for electricity markets using adaptive learning | por |
dc.type | book part | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 500 | por |
oaire.citation.startPage | 490 | por |
oaire.citation.title | Modern Approaches in Applied Intelligence - 24th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2011, Syracuse, NY, USA, June 28 – July 1, 2011, Proceedings, Part II | por |
oaire.citation.volume | Vol. 6704 | |
person.familyName | Pinto | |
person.familyName | Vale | |
person.familyName | Praça | |
person.givenName | Tiago | |
person.givenName | Zita | |
person.givenName | Isabel | |
person.identifier | R-000-T7J | |
person.identifier | 632184 | |
person.identifier | 299522 | |
person.identifier.ciencia-id | 2414-9B03-C4BB | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.ciencia-id | C710-4218-1BFF | |
person.identifier.orcid | 0000-0001-8248-080X | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.orcid | 0000-0002-2519-9859 | |
person.identifier.rid | T-2245-2018 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.rid | K-8430-2014 | |
person.identifier.scopus-author-id | 35219107600 | |
person.identifier.scopus-author-id | 7004115775 | |
person.identifier.scopus-author-id | 22734900800 | |
rcaap.rights | closedAccess | por |
rcaap.type | bookPart | por |
relation.isAuthorOfPublication | 8d58ddc0-1023-47c0-a005-129d412ce98d | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication | ee4ecacd-c6c6-41e8-bca1-21a60ff05f50 | |
relation.isAuthorOfPublication.latestForDiscovery | ff1df02d-0c0f-4db1-bf7d-78863a99420b |