Repository logo
 
Publication

Metalearning in ALBidS: A Strategic Bidding System for electricity markets

dc.contributor.authorPinto, Tiago
dc.contributor.authorSousa, Tiago
dc.contributor.authorVale, Zita
dc.contributor.authorPraça, Isabel
dc.contributor.authorMorais, H.
dc.date.accessioned2013-04-19T11:56:39Z
dc.date.available2013-04-19T11:56:39Z
dc.date.issued2012
dc.date.updated2013-04-12T11:24:51Z
dc.description.abstractMetalearning is a subfield of machine learning with special pro-pensity for dynamic and complex environments, from which it is difficult to extract predictable knowledge. The field of study of this work is the electricity market, which due to the restructuring that recently took place, became an especially complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotia-tion entities. The proposed metalearner takes advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that pro-vides decision support to electricity markets’ participating players. Using the outputs of each different strategy as inputs, the metalearner creates its own output, considering each strategy with a different weight, depending on its individual quality of performance. The results of the proposed meth-od are studied and analyzed using MASCEM - a multi-agent electricity market simulator that models market players and simulates their operation in the market. This simulator provides the chance to test the metalearner in scenarios based on real electricity market´s data.por
dc.identifier.doi10.1007/978-3-642-28762-6_30pt_PT
dc.identifier.isbn978-3-642-28761-9
dc.identifier.isbn978-3-642-28762-6
dc.identifier.issn1867-5662
dc.identifier.urihttp://hdl.handle.net/10400.22/1428
dc.language.isoengpor
dc.publisherSpringer Berlin Heidelbergpor
dc.relation.ispartofseriesAdvances in intelligent and soft computing; Vol. 156
dc.relation.publisherversionhttp://link.springer.com/chapter/10.1007/978-3-642-28762-6_30por
dc.subjectAdaptive learningpor
dc.subjectElectricity marketspor
dc.subjectIntelligent agentspor
dc.subjectMetalearningpor
dc.subjectSimulationpor
dc.titleMetalearning in ALBidS: A Strategic Bidding System for electricity marketspor
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage256por
oaire.citation.startPage247por
oaire.citation.titleHighlights on Practical Applications of Agents and Multi-Agent Systems - 10th International Conference on Practical Applications of Agents and Multi-Agent Systemspor
oaire.citation.volumeVol. 156
person.familyNamePinto
person.familyNameVale
person.familyNamePraça
person.givenNameTiago
person.givenNameZita
person.givenNameIsabel
person.identifierR-000-T7J
person.identifier632184
person.identifier299522
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0002-2519-9859
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.ridK-8430-2014
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
person.identifier.scopus-author-id22734900800
rcaap.rightsclosedAccesspor
rcaap.typebookPartpor
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublication.latestForDiscoveryee4ecacd-c6c6-41e8-bca1-21a60ff05f50

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CAPL_TiagoPinto_2012_GECAD.pdf
Size:
779.23 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: