Repository logo
 
Publication

Scalable modelling and recommendation using wiki-based crowdsourced repositories

dc.contributor.authorLeal, Fátima
dc.contributor.authorVeloso, Bruno
dc.contributor.authorMalheiro, Benedita
dc.contributor.authorGonzález-Veléz, Horacio
dc.contributor.authorBurguillo, Juan Carlos
dc.date.accessioned2019-03-12T16:37:36Z
dc.date.embargo2119
dc.date.issued2019
dc.date.updated2019-03-08T15:50:56Z
dc.description.abstractWiki-based crowdsourced repositories have increasingly become an important source of information for users in multiple domains. However, as the amount of wiki-based data increases, so does the information overloading for users. Wikis, and in general crowdsourcing platforms, raise trustability questions since they do not generally store user background data, making the recommendation of pages particularly hard to rely on. In this context, this work explores scalable multi-criteria profiling using side information to model the publishers and pages of wiki-based crowdsourced platforms. Based on streams of publisher-page-review triads, we have modelled publishers and pages in terms of quality and popularity using different criteria and user-page-view events collected via a wiki platform. Our modelling approach classifies statistically, both page-review (quality) and page-view (popularity) events, attributing an appropriate rating. The quality-related information is then merged employing Multiple Linear Regression as well as a weighted average. Based on the quality and popularity, the resulting page profiles are then used to address the problem of recommending the most interesting wiki pages per destination to viewers. This paper also explores the parallelisation of profiling and recommendation algorithms using wiki-based crowdsourced distributed data repositories as data streams via incremental updating. The proposed method has been successfully evaluated using Wikivoyage, a tourism crowdsourced wiki-based repository.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier15674223en_US
dc.identifier.doi10.1016/j.elerap.2018.11.004pt_PT
dc.identifier.issn15674223
dc.identifier.urihttp://hdl.handle.net/10400.22/12974
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1567422318300826?via%3Dihubpt_PT
dc.subjectModellingpt_PT
dc.subjectScalable data miningpt_PT
dc.subjectWiki-based crowdsourcingpt_PT
dc.subjectParallel processingpt_PT
dc.subjectReputationpt_PT
dc.subjectUser profilingpt_PT
dc.subjectCloud computingpt_PT
dc.subjectRecommender systemspt_PT
dc.titleScalable modelling and recommendation using wiki-based crowdsourced repositoriespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleElectronic Commerce Research and Applicationspt_PT
oaire.citation.volume33pt_PT
person.familyNameBENEDITA CAMPOS NEVES MALHEIRO
person.givenNameMARIA
person.identifier.ciencia-id7A15-08FC-4430
person.identifier.orcid0000-0001-9083-4292
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbabd4fda-654a-4b59-952d-6113eebbb308
relation.isAuthorOfPublication.latestForDiscoverybabd4fda-654a-4b59-952d-6113eebbb308

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_LSA_MalheiroB_ECRA_2019.pdf
Size:
745.76 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: