Repository logo
 
Publication

Ant colony search algorithm for the optimal power flow problem

dc.contributor.authorSoares, João
dc.contributor.authorSousa, Tiago
dc.contributor.authorVale, Zita
dc.contributor.authorMorais, H.
dc.contributor.authorFaria, Pedro
dc.date.accessioned2013-04-19T10:34:24Z
dc.date.available2013-04-19T10:34:24Z
dc.date.issued2011
dc.date.updated2013-04-12T16:44:11Z
dc.description.abstractTo maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.por
dc.identifierDOI 10.1109/PES.2011.6039840
dc.identifier.isbn978-1-4577-1000-1
dc.identifier.issn978-1-4577-1001-8
dc.identifier.issn1944-9925
dc.identifier.urihttp://hdl.handle.net/10400.22/1421
dc.language.isoengpor
dc.publisherIEEEpor
dc.relation.publisherversionhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6039840por
dc.subjectAnt colony searchpor
dc.subjectArtificial intelligencepor
dc.subjectEconomic dispatchpor
dc.subjectOptimal power flowpor
dc.subjectOptimization methodpor
dc.titleAnt colony search algorithm for the optimal power flow problempor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceDetroit, MI, USA, 2011por
oaire.citation.titleIEEE Power and Energy Society General Meetingpor
person.familyNameSoares
person.familyNameVale
person.familyNameFaria
person.givenNameJoão
person.givenNameZita
person.givenNamePedro
person.identifier1043580
person.identifier632184
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0002-5982-8342
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id7004115775
rcaap.rightsclosedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublication.latestForDiscovery9ece308b-6d79-4cec-af91-f2278dcc47eb

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COM_JSousa_2011_GECAD.pdf
Size:
651.18 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: