| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 7.04 MB | Adobe PDF |
Abstract(s)
Esta dissertação apresenta o desenvolvimento de uma aplicação computacional destinada à determinação da permitividade dielétrica complexa e à extrapolação de parâmetros fundamentais, como a condutividade elétrica contínua e a permitividade estática, a partir de dados experimentais. A ferramenta foi implementada em MATLAB, integrando de forma automática as etapas de leitura, interpolação, aplicação da Transformada de Hilbert e extração de parâmetros, garantindo rapidez, precisão e reprodutibilidade no processamento de dados
dielétricos. A metodologia foi validada utilizando o modelo de Debye para a água, demonstrando concordância entre os resultados obtidos e os valores de referência. Posteriormente, a aplicação foi empregue na análise de nanofluídos contendo nanopartículas de grafeno dispersas em parafina e esqualano, avaliando o efeito da temperatura e da concentração na resposta dielétrica. Conclui-se que a ferramenta desenvolvida constitui um recurso fiável e versátil para a análise automática de dados dielétricos, podendo ser aplicada a diferentes materiais e expandida para modelos não-Debye.
This dissertation presents the development of a computational application designed to determine complex dielectric permittivity and extrapolate fundamental parameters, such as continuous electrical conductivity and static permittivity, from experimental data. The tool was implemented in MATLAB, automatically integrating the steps of reading, interpolation, application of the Hilbert Transform, and parameter extraction, ensuring speed, accuracy, and reproducibility in the processing of dielectric data. The methodology was validated using the Debye model for water, demonstrating agreement between the results obtained and the reference values. Subsequently, the application was used in the analysis of nanofluids containing graphene nanoparticles dispersed in paraffin and squalane, evaluating the effect of temperature and concentration on the dielectric response. It is concluded that the developed tool is a reliable and versatile resource for the automatic analysis of dielectric data, which can be applied to different materials and expanded to non-Debye models.
This dissertation presents the development of a computational application designed to determine complex dielectric permittivity and extrapolate fundamental parameters, such as continuous electrical conductivity and static permittivity, from experimental data. The tool was implemented in MATLAB, automatically integrating the steps of reading, interpolation, application of the Hilbert Transform, and parameter extraction, ensuring speed, accuracy, and reproducibility in the processing of dielectric data. The methodology was validated using the Debye model for water, demonstrating agreement between the results obtained and the reference values. Subsequently, the application was used in the analysis of nanofluids containing graphene nanoparticles dispersed in paraffin and squalane, evaluating the effect of temperature and concentration on the dielectric response. It is concluded that the developed tool is a reliable and versatile resource for the automatic analysis of dielectric data, which can be applied to different materials and expanded to non-Debye models.
Description
Keywords
Dielectric permittivity Hilbert transform Kramers?Kronig MATLAB Nanofluids Graphene Permitividade dielétrica Transformada de Hilbert Nanofluídos Grafeno
