Repository logo
 
Publication

State-of-the-art approaches for meta-knowledge assertion in the web of data

dc.contributor.authorSen, Sangeeta
dc.contributor.authorMalta, Mariana Curado
dc.contributor.authorDutta, Biswanath
dc.contributor.authorDutta, Animesh
dc.date.accessioned2021-05-07T07:10:54Z
dc.date.available2021-05-07T07:10:54Z
dc.date.issued2020
dc.description.abstractThe integration of meta-knowledge on the Web of data is essential to support trustworthiness. This is in fact an issue because of the enormous amount of data that exists on the Web of Data. Meta-knowledge describes how the data is generated, manipulated, and disseminated. In the last few years, several approaches have been proposed for tracing and representing meta-knowledge efficiently on a statement or on a set of statements in the Semantic Web. The approaches differ significantly; for instance, in terms of modelling patterns, the number of statements generation, redundancy of the resources, query length, or query response time. This article reports a systematic review of the various approaches of the four dimensions (namely time, trust, fuzzy, and provenance) to provide an overview of the meta-knowledge assertion techniques in the field of the Semantic Web. Some experiments are conducted to analyze the actual performance of the approaches of meta-knowledge assertion considering the provenance dimension. These experiments are based on specific parameters such as graph size, number of statements generation, redundancy, query length, and query response time. All the experiments are done with real-world datasets. The semantics of the different approaches are compared to analyze the methodology of the approaches. Our study and experiments highlight the advantages and limitations of the approaches in terms of the parameters mentioned above.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1080/02564602.2020.1819891pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/17903
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationFCT UID/CEC/00319/201pt_PT
dc.relationFCT UIDB/05422/2020pt_PT
dc.subjectMeta-knowledgept_PT
dc.subjectProvenancept_PT
dc.subjectRDFpt_PT
dc.subjectSemantic webpt_PT
dc.subjectSPARQLpt_PT
dc.subjectGraph datapt_PT
dc.titleState-of-the-art approaches for meta-knowledge assertion in the web of datapt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage38pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleIETE Technical Reviewpt_PT
person.familyNameSen
person.familyNameCurado Malta
person.familyNameDutta
person.familyNameDutta
person.givenNameSangeeta
person.givenNameMariana
person.givenNameBiswanath
person.givenNameAnimesh
person.identifierD-8627-2014
person.identifier.ciencia-idFE16-B2B2-BEEB
person.identifier.orcid0000-0001-9645-7942
person.identifier.orcid0000-0002-3512-931X
person.identifier.orcid0000-0002-3248-2759
person.identifier.orcid0000-0003-4880-6903
person.identifier.scopus-author-id55974372000
person.identifier.scopus-author-id56662313800
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication8e056495-0769-41fc-adc6-bff7ade1b3d6
relation.isAuthorOfPublication55730035-9a95-46c8-aad3-0ed0623f617e
relation.isAuthorOfPublicationd491571c-8252-4168-afc7-cf67324a5bf9
relation.isAuthorOfPublication20a83c3d-a7ca-4e38-ac2e-344e885d2cd3
relation.isAuthorOfPublication.latestForDiscovery8e056495-0769-41fc-adc6-bff7ade1b3d6

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
State of the Art Approaches for Meta Knowledge Assertion in the Web of Data.pdf
Size:
2.41 MB
Format:
Adobe Portable Document Format