Repository logo
 
Publication

Self-optimization module for scheduling using case-based reasoning

dc.contributor.authorPereira, Ivo
dc.contributor.authorMadureira, Ana Maria
dc.date.accessioned2013-04-12T10:48:46Z
dc.date.available2013-04-12T10:48:46Z
dc.date.issued2013
dc.date.updated2013-04-11T16:06:16Z
dc.description.abstractMetaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.por
dc.identifier.doi10.1016/j.asoc.2012.02.009pt_PT
dc.identifier.issn1568-4946
dc.identifier.urihttp://hdl.handle.net/10400.22/1250
dc.language.isoengpor
dc.publisherElsevierpor
dc.relation.ispartofseriesApplied Soft Computing; Vol. 13, Issue 3
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1568494612000695por
dc.subjectAutonomic computingpor
dc.subjectCase-based reasoningpor
dc.subjectLearningpor
dc.subjectMeta-heuristicspor
dc.subjectMulti-agent systemspor
dc.subjectSchedulingpor
dc.titleSelf-optimization module for scheduling using case-based reasoningpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage1432por
oaire.citation.issueIssue 3
oaire.citation.startPage1419por
oaire.citation.titleApplied Soft Computing
oaire.citation.volumeVol. 13
person.familyNamePereira
person.familyNameMadureira
person.givenNameIvo
person.givenNameAna Maria
person.identifier.ciencia-id3E18-2D4C-0E14
person.identifier.ciencia-id7F1D-5AF2-A101
person.identifier.orcid0000-0001-5440-3225
person.identifier.orcid0000-0002-0264-4710
person.identifier.ridN-1713-2016
person.identifier.ridAAH-1056-2021
person.identifier.scopus-author-id36675461900
person.identifier.scopus-author-id8634629500
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication097b47eb-e9f1-40cb-9fe3-ca46efc578cb
relation.isAuthorOfPublicationcd5e5eb7-cf63-48c6-b6b9-a9db2fedebab
relation.isAuthorOfPublication.latestForDiscovery097b47eb-e9f1-40cb-9fe3-ca46efc578cb

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_IvoPereira_2013_GECAD.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: