Name: | Description: | Size: | Format: | |
---|---|---|---|---|
22.17 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Nos últimos anos, devido ao aumento da importância das alterações climáticas na
vida da população, as entidades governamentais têm imposto restrições no que toca
à circulação de veículos movidos a combustível, levando a uma maior procura de
soluções de mobilidade elétrica. A eletrónica de potência tem um papel fundamental
no desenvolvimento de soluções para colmatar estas necessidades.
Este trabalho incide no estudo e desenvolvimento de um conversor Corrente Contínua - Corrente Contínua (CC-CC) com características de isolamento galvânico e
bidirecionalidade do transito de potência. Numa primeira parte são analisadas e
comparadas as topologias de conversores com estas características, apresentando o
estado de arte dos diferentes métodos de controlo bem como das tecnologias empregues em conversores deste tipo, como os dispositivos semicondutores de comutação.
É selecionada a topologia de conversor Dual Active Bridge (DAB) e aprofundando
o estudo dos métodos de controlo mais utilizados nesta configuração.
Numa segunda fase, é realizado o dimensionamento dos componentes do conversor com base na bibliografia apresentada. O conversor é implementado em ambiente
de simulação computacional, utilizando o PLECS, e é realizada a analise de resultados para os diferentes regimes de carga. A caracterização e estudo das perdas
é realizada com a aproximação à simulação térmica do circuito desenvolvido em
ambiente de simulação.
Numa terceira parte é abordado o desenvolvimento do hardware necessário para
a construção do conversor. As opções de componentes bem como o dimensionamento
dos circuitos mais importantes são apresentado neste ponto. São desenvolvidas duas
Printed Circuit Board (PCB)s, sendo uma relativa ao andar de sinal do conversor e
a segunda aos dois andares de potência: alta tensão e baixa tensão.
Por fim, são apresentados os resultados do trabalho desenvolvido bem como
sugeridos alguns pontos de trabalho futuro.
In the recent years, due to the increasing significance of climate changes in people’s lifes, government entities have imposed restrictions on the circulation of fuel-powered vehicles, leading to a growing demand for electric mobility solutions. Power electronics plays a crucial role in developing solutions to meet these needs. This work focuses on the study and development of a galvanically isolated bidi rectional DC-DC converter. In the initial phase, various converter typologies with these characteristics are analyzed and compared, presenting the state of the art in different control methods and technologies employed in such converters, including semiconductor switching devices. The Dual Active Bridge (DAB) typologie is se lected, delving into the study of the most commonly used control methods in this configuration. In the second phase, component sizing for the converter is carried out based on the literature presented. The converter is implemented in a computer simulation environment using PLECS, and result analysis is conducted for different load conditions. The characterization and study of losses are performed with an approach to thermal simulation of the developed circuit in the simulation environment. The third part addresses the development of the hardware necessary for constructing the converter. Component options and sizing of the most important circuits are presented at this stage. Two PCBs are developed—one related to the signal stage of the converter and the second to the two power stages: high voltage and low voltage. Finally, the results of the developed work are presented, and some suggestions for future work are proposed.
In the recent years, due to the increasing significance of climate changes in people’s lifes, government entities have imposed restrictions on the circulation of fuel-powered vehicles, leading to a growing demand for electric mobility solutions. Power electronics plays a crucial role in developing solutions to meet these needs. This work focuses on the study and development of a galvanically isolated bidi rectional DC-DC converter. In the initial phase, various converter typologies with these characteristics are analyzed and compared, presenting the state of the art in different control methods and technologies employed in such converters, including semiconductor switching devices. The Dual Active Bridge (DAB) typologie is se lected, delving into the study of the most commonly used control methods in this configuration. In the second phase, component sizing for the converter is carried out based on the literature presented. The converter is implemented in a computer simulation environment using PLECS, and result analysis is conducted for different load conditions. The characterization and study of losses are performed with an approach to thermal simulation of the developed circuit in the simulation environment. The third part addresses the development of the hardware necessary for constructing the converter. Component options and sizing of the most important circuits are presented at this stage. Two PCBs are developed—one related to the signal stage of the converter and the second to the two power stages: high voltage and low voltage. Finally, the results of the developed work are presented, and some suggestions for future work are proposed.
Description
Keywords
DAB DC-DC Converter SiC MOSFET Power Electronics