Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.72 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Recent advancements in the IoT domain have been pushing for stronger demands of Qualityof-Service (QoS) and in particular for improved determinism for time-critical wireless communications
under power constraints. The IEEE 802.15.4e standard protocol introduced several new MAC behaviors that
provide enhanced time-critical and reliable communications. The Deterministic Synchronous Multichannel
Extension (DSME) is one of its prominent MAC behaviors that combines contention-based and contentionfree communication, guaranteeing bounded delays and improved reliability and scalability by leveraging
multi-channel access and CAP reduction. However, DSME has a multi-superframe structure, which is
statically defined at the beginning of the network. As the network evolves dynamically by changing its traffic
characteristics, these static settings can affect the overall throughput and increase the network delay because
of improper allocation of bandwidth. In this paper, we address this problem, and we present a dynamic
multi-superframe tuning technique that dynamically adapts the multi-superframe structure based on the size
of the network. This technique improves the QoS by providing 15-30% increase in throughput and 15-35%
decrease in delay when compared to static DSME networks
Description
Keywords
IEEE 802.15.4e DSME Multi superframe tuning QoS analysis
Citation
Publisher
Institute of Electrical and Electronics Engineers