Repository logo
 
Publication

Classification and Recommendation With Data Streams

dc.contributor.authorVeloso, Bruno
dc.contributor.authorGama, João
dc.contributor.authorMalheiro, Benedita
dc.date.accessioned2021-01-25T12:02:27Z
dc.date.embargo2120
dc.date.issued2021
dc.description.abstractNowadays, with the exponential growth of data stream sources (e.g., Internet of Things [IoT], social networks, crowdsourcing platforms, and personal mobile devices), data stream processing has become indispensable for online classification, recommendation, and evaluation. Its main goal is to maintain dynamic models updated, holding the captured patterns, to make accurate predictions. The foundations of data streams algorithms are incremental processing, in order to reduce the computational resources required to process large quantities of data, and relevance model updating. This article addresses data stream knowledge processing, covering classification, recommendation, and evaluation; describing existing algorithms/techniques; and identifying open challenges.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.4018/978-1-7998-3479-3.ch047pt_PT
dc.identifier.isbn9781799834793
dc.identifier.urihttp://hdl.handle.net/10400.22/16727
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIGI Globalpt_PT
dc.relation.publisherversionhttps://www.igi-global.com/gateway/chapter/260221pt_PT
dc.subjectData miningpt_PT
dc.subjectData streamspt_PT
dc.subjectClassificationpt_PT
dc.subjectRecommendationpt_PT
dc.subjectEvaluationpt_PT
dc.titleClassification and Recommendation With Data Streamspt_PT
dc.typebook part
dspace.entity.typePublication
oaire.citation.conferencePlaceHershey, Pennsylvania, USApt_PT
oaire.citation.endPage684pt_PT
oaire.citation.startPage675pt_PT
oaire.citation.titleEncyclopedia of Information Science and Technology, Fifth Editionpt_PT
oaire.citation.volumeIIpt_PT
person.familyNameBENEDITA CAMPOS NEVES MALHEIRO
person.givenNameMARIA
person.identifier.ciencia-id7A15-08FC-4430
person.identifier.orcid0000-0001-9083-4292
rcaap.rightsclosedAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublicationbabd4fda-654a-4b59-952d-6113eebbb308
relation.isAuthorOfPublication.latestForDiscoverybabd4fda-654a-4b59-952d-6113eebbb308

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CAPL_MBM_IGI 2020.pdf
Size:
350.91 KB
Format:
Adobe Portable Document Format