| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 4.02 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A presente dissertação tem como objetivo aplicar a metodologia de Avaliação do Ciclo de Vida ao mobiliário escolar, desenvolvendo indicadores que permitam quantificar e monitorizar a sua sustentabilidade. Para a construção do inventário foram recolhidos dados de processos reais, com especial destaque para a etapa de corte de chapas metálicas, considerada crítica no fabrico do mobiliário. Neste âmbito, foram modelados e comparados dois cenários de operação, corte com azoto e corte com ar comprimido, de modo a avaliar diferenças de desempenho ambiental e energético. A quantificação dos fluxos de entrada e saída incluiu consumos de energia, utilização de gases, geração de resíduos metálicos e emissões atmosféricas, os quais foram integrados em modelos no software OpenLCA. A análise demonstrou que o processo com azoto apresenta menores emissões e impactos ambientais, embora com custos mais elevados,
enquanto o corte com ar comprimido, apesar de mais económico, revelou impactos superiores em diversas categorias, nomeadamente no consumo energético associado à compressão do ar e na formação de partículas. Com base nestes resultados foram desenvolvidos e testados indicadores de sustentabilidade, permitindo transformar dados complexos de inventário em métricas objetivas e comparáveis. Estes indicadores possibilitam avaliar de forma integrada a eficiência energética, a gestão de recursos e a geração de impactos, constituindo um instrumento essencial para apoiar decisões estratégicas. A discussão evidencia que a utilização sistemática de métricas de ciclo de vida permite alinhar competitividade industrial com objetivos de sustentabilidade, reforçando o papel do setor do mobiliário escolar na transição para modelos produtivos mais sustentáveis.
This dissertation aims to apply the Life Cycle Assessment methodology to school furniture, developing indicators that enable the quantification and monitoring of its sustainability. For the construction of the inventory, data were collected from real industrial processes, with particular emphasis on the sheet metal cutting stage, considered critical in furniture manufacturing. In this context, two operational scenarios were modelled and compared, cutting with nitrogen and cutting with compressed air, in order to assess differences in environmental and energy performance. The quantification of input and output flows included energy consumption, use of gases, generation of metallic residues, and atmospheric emissions, which were integrated into models in the OpenLCA software. The analysis demonstrated that the process using nitrogen presents lower emissions and environmental impacts, although with significantly higher costs, while cutting with compressed air, despite being more economical, showed higher impacts in several categories, namely energy consumption associated with air compression and the formation of particulate matter. Based on these results, sustainability indicators were developed and tested, allowing complex inventory data to be transformed into objective and comparable metrics. These indicators make it possible to assess in an integrated way energy efficiency, resource management, and impact generation, constituting an essential instrument to support strategic decision-making. The discussion highlights that the systematic use of life cycle-based metrics allows industrial competitiveness to be aligned with sustainability goals, reinforcing the role of the school furniture sector in the transition towards more sustainable production models.
This dissertation aims to apply the Life Cycle Assessment methodology to school furniture, developing indicators that enable the quantification and monitoring of its sustainability. For the construction of the inventory, data were collected from real industrial processes, with particular emphasis on the sheet metal cutting stage, considered critical in furniture manufacturing. In this context, two operational scenarios were modelled and compared, cutting with nitrogen and cutting with compressed air, in order to assess differences in environmental and energy performance. The quantification of input and output flows included energy consumption, use of gases, generation of metallic residues, and atmospheric emissions, which were integrated into models in the OpenLCA software. The analysis demonstrated that the process using nitrogen presents lower emissions and environmental impacts, although with significantly higher costs, while cutting with compressed air, despite being more economical, showed higher impacts in several categories, namely energy consumption associated with air compression and the formation of particulate matter. Based on these results, sustainability indicators were developed and tested, allowing complex inventory data to be transformed into objective and comparable metrics. These indicators make it possible to assess in an integrated way energy efficiency, resource management, and impact generation, constituting an essential instrument to support strategic decision-making. The discussion highlights that the systematic use of life cycle-based metrics allows industrial competitiveness to be aligned with sustainability goals, reinforcing the role of the school furniture sector in the transition towards more sustainable production models.
Description
Keywords
Life Cycle Assessment Sustainability School Furniture Cutting Processes Performance Indicators Environmental Impacts Avaliação do ciclo de vida Sustentabilidade Mobiliário escolar Processos de corte Indicadores de sustentabilidade Impactos ambientais
