Repository logo
 
Publication

Business models for flexibility of electric vehicles

dc.contributor.authorLezama, Fernando
dc.contributor.authorSoares, João
dc.contributor.authorFaia, R.
dc.contributor.authorVale, Zita
dc.contributor.authorMacedo, Leonardo H.
dc.contributor.authorRomero, Rubén
dc.date.accessioned2021-01-29T09:57:18Z
dc.date.available2021-01-29T09:57:18Z
dc.date.issued2019
dc.description.abstractThe electrical grid is undergoing an unprecedented evolution driven mainly by the adoption of smart grid technologies. The high penetration of distributed energy resources, including renewables and electric vehicles, promises several beneits to the diferent market actors and consumers, but at the same time imposes grid integration challenges that must adequately be addressed. In this paper, we explore and propose potential business models (BMs) in the context of distribution networks with high penetration of electric vehicles (EVs). The analysis is linked to the CENERGETIC project (Coordinated ENErgy Resource manaGEment under uncerTainty considering electrIc vehiCles and demand lexibility in distribution networks). Due to the complex mechanisms needed to fulill the interactions between stakeholders in such a scenario, computational intelligence (CI) techniques are envisaged as a viable option to provide eicient solutions to the optimization problems that might arise by the adoption of innovative BMs. After a brief review on evolutionary computation (EC) applied to the optimization problems in distribution networks with high penetration of EVs, we conclude that EC methods can be suited to implement the proposed business models in our future CENERGETIC project and beyond.pt_PT
dc.description.sponsorshipThis research has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under Project POCI-01-0145-FEDER-028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017 (CENERGETIC), UID/EEA/00760/2019; and the São Paulo Research Foundation (FAPESP), under Projects 2018/08008-4 and 2018/20355- 1pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1145/3319619.3326807pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/16791
dc.language.isoengpt_PT
dc.publisherACMpt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://dl.acm.org/doi/10.1145/3319619.3326807pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectComputing methodologiept_PT
dc.subjectSearch methodologiespt_PT
dc.subjectAppliedcomputingpt_PT
dc.subjectEngineeringpt_PT
dc.titleBusiness models for flexibility of electric vehiclespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28983%2F2017/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT
oaire.citation.conferencePlacePrague, Czech Republicpt_PT
oaire.citation.endPage1878pt_PT
oaire.citation.startPage1873pt_PT
oaire.citation.titleGECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference Companionpt_PT
oaire.fundingStream9471 - RIDTI
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLezama
person.familyNameSoares
person.familyNameFaia
person.familyNameVale
person.givenNameFernando
person.givenNameJoão
person.givenNameRicardo Francisco Marcos
person.givenNameZita
person.identifier1043580
person.identifier78FtZwIAAAAJ
person.identifier632184
person.identifier.ciencia-idE31F-56D6-1E0F
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id9B12-19F6-D6C7
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8638-8373
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-1053-7720
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-6945-2017
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id36810077500
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication6a55317b-92c2-404f-8542-c7a73061cc9b
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublication5866fe1d-e5f9-42fb-a7c8-e35a23d6a6ce
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isProjectOfPublication6615f0c1-4abc-48fc-ac0a-fce560b02403
relation.isProjectOfPublication9b771c00-8c2c-4226-b06d-e33ef11f0d32
relation.isProjectOfPublication.latestForDiscovery9b771c00-8c2c-4226-b06d-e33ef11f0d32

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_GECAD_2019.pdf
Size:
201.06 KB
Format:
Adobe Portable Document Format