| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 4.17 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Efficiently screening and evaluating curricula in recruitment processes is a critical task that often requires substantial time and effort from Human Resources professionals. This work presents CurEval, an algorithm developed to automate the evaluation and screening of curricula based on vacancy requirements. The algorithm utilizes a predefined set of keywords and a CSV file format for input, facilitating easy data structuring and processing. To validate the algorithm’s performance and address privacy concerns, synthetic curricula were generated using templates with slight variations in personal data. The algorithm’s results were compared with evaluations made by a Human Resources collaborator and external paid recruitment platforms. The study’s findings indicate that CurEval effectively filters out irrelevant curricula, reducing the screening workload for HR professionals. The algorithm aligns with human evaluations, ensuring accurate classification of curricula according to vacancy requirements. Additionally, bias analysis revealed no evidence of discriminatory bias in the algorithm or human evaluations in the sample data. Further improvements for CurEval include expanding the list of keywords, incorporating natural language processing techniques, and integrating machine learning to enhance accuracy and adaptability. Real-time data integration, feedback loops with HR professionals, and integration with Applicant Tracking Systems are suggested to streamline the recruitment process. Multi-lingual support, performance metrics, and ongoing ethical considerations are also essential for refining and maintaining the algorithm’s effectiveness and fairness. CurEval offers promising potential to revolutionize the curricula evaluation process, enabling faster and more efficient screening while ensuring fairness and equal opportunity. Future work should focus on enhancing the algorithm’s capabilities, addressing biases, and continuously validating and improving its performance through collaboration and feedback from HR professionals.
A automação da análise e classificação de currículos tem sido alvo de estudo e destaque nas últimas décadas, guiado pela evolução e aperfeiçoamento dos algoritmos de Inteligência Artificial e da Machine Learning. Nesta dissertação vai ser abordado o processo de análise e classificação destes assim como as questões éticas e bias associados ao processo que advém da natureza humana e das vivências individuais do recrutador. De forma a se evitar que estes ocorram durante o processo de recrutamento foi desenvolvido um algoritmo de análise e classificação dos currículos de acordo com a vaga em questão. Para além deste serão criados standards para a classificação e análise dos currículos, independentemente da sua origem e dos formatos. O algoritmo utiliza um conjunto pré-definido de palavras-chave e um formato de arquivo CSV para entrada, facilitando a estruturação e processamento dos dados. Para validar o desempenho do algoritmo e abordar preocupações de privacidade, currículos sintéticos foram gerados usando modelos com pequenas variações nos dados pessoais. Os resultados do algoritmo foram comparados com avaliações feitas por um colaborador de Recursos Humanos e plataformas externas de recrutamento pagas. Os resultados do estudo indicam que o CurEval filtra efetivamente currículos irrelevantes, reduzindo a carga de trabalho de triagem para os profissionais de RH. Este está alinhado com as avaliações humanas, garantindo a classificação precisa dos currículos de acordo com os requisitos das vagas. Além disso, a análise de viés discriminatórios revelou que não há evidências da existência dos mesmos no algoritmo ou nas avaliações humanas para a amostragem. Melhorias futuras para o CurEval incluem a expansão da lista de palavras-chave, a incorporação de técnicas de processamento de linguagem natural e a integração de Machine Learning para aprimorar a precisão e adaptabilidade. Integração de dados em tempo real, ciclos de feedback com profissionais de RH e integração com Sistemas de Acompanhamento de Candidatos são sugeridos para otimizar o processo de recrutamento. Suporte a múltiplos idiomas, métricas de desempenho e considerações éticas contínuas são essenciais para refinar e manter a eficácia e equidade do algoritmo.
A automação da análise e classificação de currículos tem sido alvo de estudo e destaque nas últimas décadas, guiado pela evolução e aperfeiçoamento dos algoritmos de Inteligência Artificial e da Machine Learning. Nesta dissertação vai ser abordado o processo de análise e classificação destes assim como as questões éticas e bias associados ao processo que advém da natureza humana e das vivências individuais do recrutador. De forma a se evitar que estes ocorram durante o processo de recrutamento foi desenvolvido um algoritmo de análise e classificação dos currículos de acordo com a vaga em questão. Para além deste serão criados standards para a classificação e análise dos currículos, independentemente da sua origem e dos formatos. O algoritmo utiliza um conjunto pré-definido de palavras-chave e um formato de arquivo CSV para entrada, facilitando a estruturação e processamento dos dados. Para validar o desempenho do algoritmo e abordar preocupações de privacidade, currículos sintéticos foram gerados usando modelos com pequenas variações nos dados pessoais. Os resultados do algoritmo foram comparados com avaliações feitas por um colaborador de Recursos Humanos e plataformas externas de recrutamento pagas. Os resultados do estudo indicam que o CurEval filtra efetivamente currículos irrelevantes, reduzindo a carga de trabalho de triagem para os profissionais de RH. Este está alinhado com as avaliações humanas, garantindo a classificação precisa dos currículos de acordo com os requisitos das vagas. Além disso, a análise de viés discriminatórios revelou que não há evidências da existência dos mesmos no algoritmo ou nas avaliações humanas para a amostragem. Melhorias futuras para o CurEval incluem a expansão da lista de palavras-chave, a incorporação de técnicas de processamento de linguagem natural e a integração de Machine Learning para aprimorar a precisão e adaptabilidade. Integração de dados em tempo real, ciclos de feedback com profissionais de RH e integração com Sistemas de Acompanhamento de Candidatos são sugeridos para otimizar o processo de recrutamento. Suporte a múltiplos idiomas, métricas de desempenho e considerações éticas contínuas são essenciais para refinar e manter a eficácia e equidade do algoritmo.
Description
Keywords
Curricula Evaluation Artificial Intelligence Classification Evaluation Standards
