Repository logo
 
Publication

A Novel Multi-View Ensemble Learning Architecture to Improve the Structured Text Classification

dc.contributor.authorGonçalves, Carlos Adriano
dc.contributor.authorVieira, Adrián Seara
dc.contributor.authorTalma Gonçalves, Célia
dc.contributor.authorCamacho, Rui
dc.contributor.authorIglesias, Eva Lorenzo
dc.contributor.authorDiz, Lourdes Borrajo
dc.date.accessioned2023-01-26T14:38:39Z
dc.date.available2023-01-26T14:38:39Z
dc.date.issued2022-06-01
dc.description.abstractMulti-view ensemble learning exploits the information of data views. To test its efficiency for full text classification, a technique has been implemented where the views correspond to the document sections. For classification and prediction, we use a stacking generalization based on the idea that different learning algorithms provide complementary explanations of the data. The present study implements the stacking approach using support vector machine algorithms as the baseline and a C4.5 implementation as the meta-learner. Views are created with OHSUMED biomedical full text documents. Experimental results lead to the sustained conclusion that the application of multi-view techniques to full texts significantly improves the task of text classification, providing a significant contribution for the biomedical text mining research. We also have evidence to conclude that enriched datasets with text from certain sections are better than using only titles and abstractspt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationGonçalves, C. A., Vieira, A. S., Gonçalves, C. T., Camacho, R., Iglesias, E. L., & Diz, L. B. (2022). A Novel Multi-View Ensemble Learning Architecture to Improve the Structured Text Classification. Information, 13(6), 283. https://doi.org/10.3390/info13060283pt_PT
dc.identifier.doi10.3390/info13060283pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/21907
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.subjectMulti-view ensemble learningpt_PT
dc.subjectEnsemble methodspt_PT
dc.subjectOHSUMED corpuspt_PT
dc.subjectFull text classificationpt_PT
dc.subjectStackingpt_PT
dc.titleA Novel Multi-View Ensemble Learning Architecture to Improve the Structured Text Classificationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue6pt_PT
oaire.citation.startPage283pt_PT
oaire.citation.titleInformationpt_PT
oaire.citation.volume13pt_PT
person.familyNameGonçalves
person.givenNameCélia Talma
person.identifier.ciencia-id8D1A-3FA3-B0BE
person.identifier.orcid0000-0002-3861-0854
person.identifier.ridN-6928-2013
person.identifier.scopus-author-id36639150600
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationedb973c2-6044-45d0-a350-2fe58dcad1f8
relation.isAuthorOfPublication.latestForDiscoveryedb973c2-6044-45d0-a350-2fe58dcad1f8

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
information-13-00283.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: