Repository logo
 
Publication

Crowdsourced Data Stream Mining for Tourism Recommendation

dc.contributor.authorLeal, Fátima
dc.contributor.authorVeloso, Bruno
dc.contributor.authorMalheiro, Benedita
dc.contributor.authorJuan Carlos, Burguillo
dc.date.accessioned2021-10-13T12:37:08Z
dc.date.embargo2031
dc.date.issued2021
dc.description.abstractCrowdsourced data streams are continuous flows of data generated at high rate by users, also known as the crowd. These data streams are popular and extremely valuable in several domains. This is the case of tourism, where crowdsourcing platforms rely on tourist and business inputs to provide tailored recommendations to future tourists in real time. The continuous, open and non-curated nature of the crowd-originated data requires robust data stream mining techniques for on-line profiling, recommendation and evaluation. The sought techniques need, not only, to continuously improve profiles and learn models, but also be transparent, overcome biases, prioritise preferences, and master huge data volumes; all in real time. This article surveys the state-of-art in this field, and identifies future research opportunities.pt_PT
dc.description.sponsorshipThis work was partially financed by National Funds through the FCT – Funda¸c˜ao para a Ciˆencia e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UIDB/50014/2020, and also from Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2019-2022) and the European Union (European Regional Development Fund - ERDF).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/978-3-030-72657-7_25pt_PT
dc.identifier.isbn978-3-030-72656-7
dc.identifier.urihttp://hdl.handle.net/10400.22/18701
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationINESC TEC- Institute for Systems and Computer Engineering, Technology and Science
dc.relation.ispartofseries1365;25
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007%2F978-3-030-72657-7_25pt_PT
dc.subjectCrowdsourced data streamspt_PT
dc.subjectData stream miningpt_PT
dc.subjectProfilingpt_PT
dc.subjectRecommendationpt_PT
dc.subjectTourismpt_PT
dc.titleCrowdsourced Data Stream Mining for Tourism Recommendationpt_PT
dc.typebook part
dspace.entity.typePublication
oaire.awardTitleINESC TEC- Institute for Systems and Computer Engineering, Technology and Science
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50014%2F2020/PT
oaire.citation.endPage269pt_PT
oaire.citation.startPage260pt_PT
oaire.citation.titleProgress in Artificial Intelligence. EPIA 2021pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBENEDITA CAMPOS NEVES MALHEIRO
person.givenNameMARIA
person.identifier.ciencia-id7A15-08FC-4430
person.identifier.orcid0000-0001-9083-4292
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublicationbabd4fda-654a-4b59-952d-6113eebbb308
relation.isAuthorOfPublication.latestForDiscoverybabd4fda-654a-4b59-952d-6113eebbb308
relation.isProjectOfPublication7a2d9a82-ee07-4c57-bbbf-2d88b942688d
relation.isProjectOfPublication.latestForDiscovery7a2d9a82-ee07-4c57-bbbf-2d88b942688d

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CAPL_LSA_MBM_WorldCist_2021.pdf
Size:
187.3 KB
Format:
Adobe Portable Document Format