| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 13.66 MB | Adobe PDF |
Advisor(s)
Abstract(s)
The increasing reliance on the Internet of Medical Things (IoMT) raises great concern in terms of cybersecurity, either at the device’s physical level or at the communication and transmission level. This is particularly important as these systems process very sensitive and private data, including personal health data from multiple patients such as real-time body measurements. Due to these concerns, cybersecurity mechanisms and strategies must be in place to protect these medical systems, defending them from compromising cyberattacks. Authentication is an essential cybersecurity technique for trustworthy IoMT communications. However, current authentication methods rely on upper-layer identity verification or key-based cryptography which can be inadequate to the heterogeneous Internet of Things (IoT) environments. This thesis proposes the development of a Machine Learning (ML) method that serves as a foundation for Radio Frequency Fingerprinting (RFF) in the authentication of IoMT devices in medical applications to improve the flexibility of such mechanisms. This technique allows the authentication of medical devices by their physical layer characteristics, i.e. of their emitted signal. The development of ML models serves as the foundation for RFF, allowing it to evaluate and categorise the released signal and enable RFF authentication. Multiple feature take part of the proposed decision making process of classifying the device, which then is implemented in a medical gateway, resulting in a novel IoMT technology.
A confiança crescente na IoMT suscita grande preocupação em termos de cibersegurança, quer ao nível físico do dispositivo quer ao nível da comunicação e ao nível de transmissão. Isto é particularmente importante, uma vez que estes sistemas processam dados muito sensíveis e dados, incluindo dados pessoais de saúde de diversos pacientes, tais como dados em tempo real de medidas do corpo. Devido a estas preocupações, os mecanismos e estratégias de ciber-segurança devem estar em vigor para proteger estes sistemas médicos, defendendo-os de ciberataques comprometedores. A autenticação é uma técnica essencial de ciber-segurança para garantir as comunicações em sistemas IoMT de confiança. No entanto, os métodos de autenticação atuais focam-se na verificação de identidade na camada superior ou criptografia baseada em chaves que podem ser inadequadas para a ambientes IoMT heterogéneos. Esta tese propõe o desenvolvimento de um método de ML que serve como base para o RFF na autenticação de dispositivos IoMT para melhorar a flexibilidade de tais mecanismos. Isto permite a autenticação dos dispositivos médicos pelas suas características de camada física, ou seja, a partir do seu sinal emitido. O desenvolvimento de modelos de ML serve de base para o RFF, permitindo-lhe avaliar e categorizar o sinal libertado e permitir a autenticação do RFF. Múltiplas features fazem parte do processo de tomada de decisão proposto para classificar o dispositivo, que é implementada num gateway médico, resultando numa nova tecnologia IoMT.
A confiança crescente na IoMT suscita grande preocupação em termos de cibersegurança, quer ao nível físico do dispositivo quer ao nível da comunicação e ao nível de transmissão. Isto é particularmente importante, uma vez que estes sistemas processam dados muito sensíveis e dados, incluindo dados pessoais de saúde de diversos pacientes, tais como dados em tempo real de medidas do corpo. Devido a estas preocupações, os mecanismos e estratégias de ciber-segurança devem estar em vigor para proteger estes sistemas médicos, defendendo-os de ciberataques comprometedores. A autenticação é uma técnica essencial de ciber-segurança para garantir as comunicações em sistemas IoMT de confiança. No entanto, os métodos de autenticação atuais focam-se na verificação de identidade na camada superior ou criptografia baseada em chaves que podem ser inadequadas para a ambientes IoMT heterogéneos. Esta tese propõe o desenvolvimento de um método de ML que serve como base para o RFF na autenticação de dispositivos IoMT para melhorar a flexibilidade de tais mecanismos. Isto permite a autenticação dos dispositivos médicos pelas suas características de camada física, ou seja, a partir do seu sinal emitido. O desenvolvimento de modelos de ML serve de base para o RFF, permitindo-lhe avaliar e categorizar o sinal libertado e permitir a autenticação do RFF. Múltiplas features fazem parte do processo de tomada de decisão proposto para classificar o dispositivo, que é implementada num gateway médico, resultando numa nova tecnologia IoMT.
Description
Keywords
RFF ML CNN IoMT
