Repository logo
 
Publication

Fair Remuneration of Energy Consumption Flexibility Using Shapley Value

dc.contributor.authorFaia, R.
dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.date.accessioned2021-02-03T15:09:36Z
dc.date.available2021-02-03T15:09:36Z
dc.date.issued2019
dc.description.abstractThis paper proposes a new methodology for fair remuneration of consumers participation in demand response events. With the increasing penetration of renewable energy sources with a high variability; the flexibility from the consumers’ side becomes a crucial asset in power and energy systems. However, determining how to effectively remunerate consumers flexibility in a fair way is a challenging task. Current models tend to apply over-simplistic and non-realistic approaches which do not incentivize the participation of the required players. This paper proposes a novel methodology to remunerate consumers flexibility, in a fair way. The proposed model considers different aggregators, which manage the demand response requests within their coalition. After player provide their flexibility, the remuneration is calculated based on the flexibility amount provided by the players, the previous participation in demand response programs, the localization of the players, the type of consumer, the effort put in the provided flexibility amount, and the contribution to the stability of the coalition structure using the Shapley value. Results show that by assigning different weights to the distinct factors that compose the calculation formulation, players remuneration can be adapted to the needs and goals of both the players and the aggregators.pt_PT
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under project DOMINOES (grant agreement No 771066) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2019 and Ricardo Faia is supported by FCT Funds through and SFRH/BD/133086/2017 PhD scholarship.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/978-3-030-30241-2_45pt_PT
dc.identifier.isbn978-3-030-30241-2
dc.identifier.urihttp://hdl.handle.net/10400.22/16852
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relationApoio à decisão para participação em mercados de energia elétrica
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007%2F978-3-030-30241-2_45pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectDemand responsept_PT
dc.subjectFairnesspt_PT
dc.subjectPayoff allocationpt_PT
dc.subjectRemunerationpt_PT
dc.subjectShapley valuept_PT
dc.titleFair Remuneration of Energy Consumption Flexibility Using Shapley Valuept_PT
dc.typebook part
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardTitleApoio à decisão para participação em mercados de energia elétrica
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F133086%2F2017/PT
oaire.citation.conferencePlaceVila Real, Portugalpt_PT
oaire.citation.endPage544pt_PT
oaire.citation.startPage532pt_PT
oaire.citation.titleEPIA Conference on Artificial Intelligence (EPIA 2019)pt_PT
oaire.citation.volume11804pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameFaia
person.familyNamePinto
person.familyNameVale
person.givenNameRicardo Francisco Marcos
person.givenNameTiago
person.givenNameZita
person.identifier78FtZwIAAAAJ
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id9B12-19F6-D6C7
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-1053-7720
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublication5866fe1d-e5f9-42fb-a7c8-e35a23d6a6ce
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery5866fe1d-e5f9-42fb-a7c8-e35a23d6a6ce
relation.isProjectOfPublication9b771c00-8c2c-4226-b06d-e33ef11f0d32
relation.isProjectOfPublication5174c937-e0b3-4cec-a768-c1fe1d75165e
relation.isProjectOfPublication.latestForDiscovery9b771c00-8c2c-4226-b06d-e33ef11f0d32

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CAPL_GECAD_EPIA_2019_Shapley_final.pdf
Size:
399.72 KB
Format:
Adobe Portable Document Format