Repository logo
 
Loading...
Thumbnail Image
Publication

Algoritmos Genéticos para Otimização de soluções integrando carregadores de veículos elétricos, auto-produção e armazenamento de energia

Use this identifier to reference this record.
Name:Description:Size:Format: 
Tese_5028_v2.pdf5.32 MBAdobe PDF Download

Abstract(s)

É crescente a importância da energia renovável e da mobilidade elétrica, para enfrentar os desafios ambientais e energéticos atuais. Acerca da mobilidade elétrica, o número crescente de veículos elétricos a bateria e veículos elétricos híbridos plug-in, traz a necessidade de mais infraestrutura de carregamento, destes tipos de veículos, nas cidades e nas estradas, onde tais infraestrutas precisam estar conectadas à rede elétrica de distribuição, resultando em restrições como disponibilidade de potência. Este trabalho faz uma abordagem acerca do dimensionamento de uma estação de carregamentos rápidos de veículos elétricos, lidando com esse desafio através da implementação de um sistema de armazenamento de energia baseado em bateria BESS e considerando a inserção no sistema de uma fonte de energia renovável (energia solar). Pretendemos minimizar os custos globais de energia, para evitar atualizações futuras na infraestrutura e potencializar a integração de recursos de energia renovável. A metodologia adotada baseia-se no Algoritmo BRKGA, um método aplicado em problemas de otimização combinatória, para encontrar soluções ótimas que levem em consideração a carga de carros elétricos, a geração de energia renovável local e o armazenamento eficiente de energia com custos mínimos. Através de estudos de caso com diferentes cenários, implementamos a metodologia proposta. Foram obtidos resultados para o dimensionamento de uma estação de recarga com auto produção de energia de fonte renovável que minimizam os custos de energia. Este trabalho, destaca a importância contínua da pesquisa em Algoritmos Genéticos e seu papel relevante na resolução de problemas complexos relacionados à energia e mobilidade elétrica, pavimentando o caminho para um futuro mais sustentável e ecologicamente consciente.
The importance of renewable energy and electric mobility is growing to face current environmental and energy challenges. Regarding electric mobility, the growing number of battery electric vehicles and plug-in hybrid electric vehicles brings about the need for more charging infrastructure for these types of vehicles in cities and on roads, where such infrastructure needs to be connected to the electrical grid. distribution, resulting in restrictions such as power availability. This work takes an approach to the sizing of a fast charging station for electric vehicles, dealing with this challenge through the implementation of an energy storage system based on a BESS battery and considering the insertion into the system of a renewable energy source (energy solar). We aim to minimize global energy costs, to avoid future infrastructure upgrades and enhance the integration of renewable energy resources. The methodology adopted is based on the BRKGA Algorithm, a method applied to combinatorial optimization problems, to find optimal solutions that take into account the charging of electric cars, local renewable energy generation and efficient energy storage with minimum costs. Through case studies with different scenarios, we implemented the proposed methodology. Results were obtained for the design of a charging station with self-production of energy from renewable sources that minimize energy costs. This work highlights the continued importance of research in Genetic Algorithms and their relevant role in solving complex problems related to energy and electric mobility, paving the way for a more sustainable and ecologically conscious future.

Description

Keywords

Veículos elétricos Energias renováveis Algoritmos genéticos Sistemas de armazenamento de energia em baterias Carregamento Electric vehicles Renewable energies Genetic algorithms Energy storage in bateries Charging

Citation

Research Projects

Organizational Units

Journal Issue