Repository logo
 
Publication

Classification of local energy trading negotiation profiles using artificial neural networks

dc.contributor.authorPinto, Angelo
dc.contributor.authorPinto, Tiago
dc.contributor.authorPraça, Isabel
dc.contributor.authorVale, Zita
dc.date.accessioned2022-03-17T10:46:39Z
dc.date.available2022-03-17T10:46:39Z
dc.date.issued2019
dc.description.abstractElectricity markets are evolving into a local trading setting, which makes it for unexperienced players to achieve good agreements and obtain profits. One of the solutions to deal with this issue is to provide players with decision support solutions capable of identifying opponents' negotiation profiles, so that negotiation strategies can be adapted to those profiles in order to reach the best possible results from negotiations. This paper presents an approach that classifies opponents' proposals during a negotiation, to determine which is the typical negotiation profile in which the opponent most relates. The classification process is performed using an artificial neural network approach, and it is able to adapt at each new proposal during the negotiation process, by re-classifying the opponents' negotiation profile according to the most recent actions. In this way, effective decision support is provided to market players, enabling them to adapt the negotiation strategy throughout the negotiations.pt_PT
dc.description.sponsorshipThis work has received funding from National Funds through FCT (Fundaçao da Ciencia e Tecnologia) under the project SPET – 29165, call SAICT 2017pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/PESGM40551.2019.8973600pt_PT
dc.identifier.isbn978-1-7281-1981-6
dc.identifier.issn1944-9933
dc.identifier.urihttp://hdl.handle.net/10400.22/20274
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8973600pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/pt_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectClassificationpt_PT
dc.subjectElectricity marketspt_PT
dc.subjectProfile modellingpt_PT
dc.titleClassification of local energy trading negotiation profiles using artificial neural networkspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceAtalanta, USApt_PT
oaire.citation.endPage5pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2019 IEEE Power & Energy Society General Meeting (PESGM)pt_PT
person.familyNamePraça
person.familyNameVale
person.givenNameIsabel
person.givenNameZita
person.identifier299522
person.identifier632184
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-2519-9859
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridK-8430-2014
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id22734900800
person.identifier.scopus-author-id7004115775
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryee4ecacd-c6c6-41e8-bca1-21a60ff05f50

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_PESGM_2019.pdf
Size:
505.86 KB
Format:
Adobe Portable Document Format