Publication
Air Conditioning Consumption Optimization Based on CO2 Concentration Level
dc.contributor.author | Khorram Ghahfarrokhi, Mahsa | |
dc.contributor.author | Zheiry, Modar | |
dc.contributor.author | Faria, Pedro | |
dc.contributor.author | Vale, Zita | |
dc.date.accessioned | 2021-09-22T14:28:04Z | |
dc.date.available | 2021-09-22T14:28:04Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Nowadays, energy consumption increasing is a big concern for many countries around the world. Disadvantages and consequences of fossil fuels for the environment caused a lot of efforts to invest in renewable energy resources and programs to optimize energy consumption. All types of buildings are the major consumers of electric power. Therefore, buildings can be considered as good options for implementing optimization algorithms, assuming that they are equipped to required infrastructures. Air conditioners are flexible loads that can be directly controlled by optimization programs. This paper presents a particle swarm optimization algorithm to minimize the power consumption of the air conditioners based on the carbon dioxide concentration level. The algorithm considers the thermal comfort of users with defining restrictions. The case study of the paper proposes two scenarios with real monitored data of a building. The result of the paper shows the obtained results of the algorithm and makes the comparison of two scenarios. | pt_PT |
dc.description.sponsorship | The present work was done and funded in the scope of the following projects: COLORS Project, CEECIND/02887/2017, and UID/EEA/00760/2019 funded by FEDER Funds through COMPETE program and National Funds through FCT. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1109/ISAP48318.2019.9065967 | pt_PT |
dc.identifier.isbn | 978-1-7281-3192-4 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/18482 | |
dc.language.iso | eng | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation | CEECIND/02887/2017 | pt_PT |
dc.relation | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9065967 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | pt_PT |
dc.subject | Optimization | pt_PT |
dc.subject | PSO | pt_PT |
dc.subject | Buildings | pt_PT |
dc.subject | CO2 | pt_PT |
dc.title | Air Conditioning Consumption Optimization Based on CO2 Concentration Level | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT | |
oaire.citation.conferencePlace | New Delhi, India | pt_PT |
oaire.citation.endPage | 5 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP) | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Khorram Ghahfarrokhi | |
person.familyName | Faria | |
person.familyName | Vale | |
person.givenName | Mahsa | |
person.givenName | Pedro | |
person.givenName | Zita | |
person.identifier | 632184 | |
person.identifier.ciencia-id | 9719-75D7-B785 | |
person.identifier.ciencia-id | B212-2309-F9C3 | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0002-0581-2898 | |
person.identifier.orcid | 0000-0002-5982-8342 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 57201796142 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 37496d99-b654-4316-9051-c9e39ee07c75 | |
relation.isAuthorOfPublication | 35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isProjectOfPublication | 9b771c00-8c2c-4226-b06d-e33ef11f0d32 | |
relation.isProjectOfPublication.latestForDiscovery | 9b771c00-8c2c-4226-b06d-e33ef11f0d32 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- COM_GECAD_Mahsa_ISAP_2019.pdf
- Size:
- 544.71 KB
- Format:
- Adobe Portable Document Format