Repository logo
 
No Thumbnail Available
Publication

Deep Learning para BigData

Use this identifier to reference this record.
Name:Description:Size:Format: 
DM_FilipeCorreia_2021_MEI.pdf6.2 MBAdobe PDF Download

Abstract(s)

We live in a world where data is becoming increasingly valuable and increasingly abundant in volume. Every company produces data, be it from sales, sensors, and various other sources. Since the dawn of the smartphone, virtually every person in the world is connected to the internet and contributes to data generation. Social networks are big contributors to this Big Data boom. How do we extract insight from such a rich data environment? Is Deep Learning capable of circumventing Big Data’s challenges? This is what we intend to understand. To reach a conclusion, Social Network data is used as a case study for predicting sentiment changes in the Stock Market. The objective of this dissertation is to develop a computational study and analyse its performance. The outputs will contribute to understand Deep Learning’s usage with Big Data and how it acts in Sentiment analysis.
Vivemos num mundo onde dados são cada vez mais valiosos e abundantes. Todas as empresas produzem dados, sejam eles provenientes de valores de vendas, parâmetros de sensores bem como de outras diversas fontes. Desde que os smartphones se tornaram pessoais, o mundo tornou-se mais conectado, já que virtualmente todas as pessoas passaram a ter a internet na ponta dos dedos. Esta explosão tecnológica foi acompanhada por uma explosão de dados. As redes sociais têm um grande contributo para a quantidade de dados produzida. Mas como se analisam estes dados? Será que Deep Learning poderá dar a volta aos desafios que Big Data traz inerentemente? É isso se pretende perceber. Para chegar a uma conclusão, foi utilizado um caso de estudo de redes sociais para previsão de alterações nas ações de mercados financeiros relacionadas com as opiniões dos utilizadores destas. O objetivo desta dissertação é o desenvolvimento de um estudo computacional e a análise da sua performance. Os resultados contribuirão para entender o uso de Deep Learning com Big Data, com especial foco em análise de sentimento. The objective of this dissertation is to develop a computational study and analyse its performance. The outputs will contribute to understand Deep Learning’s usage with Big Data and how it acts in Sentiment analysis.

Description

Keywords

Deep Learning Big Data Neural Network Stock Data Financial Markets Social Networks Redes Neuronais Dados de ações Mercados Financeiros Redes Sociais

Citation

Research Projects

Organizational Units

Journal Issue

Publisher

CC License