Repository logo
 
Publication

Identificação automática de aves a partir de áudio

dc.contributor.advisorGomes, Elsa Maria de Carvalho Ferreira
dc.contributor.authorCarvalho, Silvestre Daniel Dias
dc.date.accessioned2020-11-05T15:00:55Z
dc.date.available2020-11-05T15:00:55Z
dc.date.issued2020
dc.description.abstractBird classification from audio is mainly useful for ornithologists and ecologists. With growing amounts of data, manual bird classification is time-consuming, which makes it a costly method. Birds react quickly to environmental changes, which makes their analysis an important problem in ecology, as analyzing bird behaviour and population trends helps detect other organisms in the environment. A reliable methodology that automatically identifies bird species from audio would be a valuable tool for the experts in the area. The main purpose of this work is to propose a methodology able to identify a bird species by its chirp. There are many techniques that can be used to process the audio data, and to classify the audio data. This thesis explores the deep learning techniques that are being used in this domain, such as using Convolutional Neural Networks and Recurrent Neural Networks to classify the data. Audio problems in deep learning are commonly approached by converting them into images using feature extraction techniques such as Mel Spectrograms and Mel Frequency Cepstral Coefficients. Multiple deep learning and feature extraction combinations are used and compared in this thesis in order to find the most suitable approach to this problem.pt_PT
dc.description.abstractClassificação de pássaros a partir de áudio é principalmente útil para ornitólogos e ecologistas. Com o aumento da quantidade de dados disponível, classificar a espécie dos pássaros manualmente acaba por consumir muito tempo. Os pássaros reagem rapidamente às alterações climáticas, o que faz com que a análise de pássaros seja um problema interessante na ecologia, porque ao analisar o comportamento das aves e a tendência populacional, outros organismos podem ser detetados no meio ambiente. Devido a estes factos, a criação de uma metodologia que identifique a espécie dos pássaros fiavelmente seria uma ferramenta bastante útil para os especialistas na área. O objetivo principal do trabalho nesta dissertação é propor uma metodologia que identifique a espécie de uma ave através do seu canto. Existem diversas técnicas que podem ser usadas para processar os dados sonoros que contêm os cantos das aves, e que podem ser usadas para classificar as espécies das aves. Esta dissertação explora as principais técnicas de deep learning que são usadas neste domínio, tais como as redes neuronais convolucionais e as redes neuronais recorrentes que são usadas para classificar os dados. Os problemas relacionados com som no deep learning, são normalmente abordados por converter os dados sonoros em imagens utilizando técnicas de extração de atributos, para depois serem classificados utilizando modelos de deep learning tipicamente utilizados para classificar imagens. Dois exemplos destas técnicas de extração de atributos normalmente utilizadas são os Espectrogramas de Mel e os Coeficientes Cepstrais da Frequência de Mel. Nesta dissertação, são feitas múltiplas combinações de técnicas de deep learning com técnicas de extração de atributos do som. Estas combinações são utilizadas para serem comparadas com o âmbito de encontrar a abordagem mais apropriada para o problema.pt_PT
dc.identifier.tid202533476pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/16439
dc.language.isoengpt_PT
dc.subjectBird Audio Classificationpt_PT
dc.subjectDeep Learningpt_PT
dc.subjectAudio Feature Extractionpt_PT
dc.titleIdentificação automática de aves a partir de áudiopt_PT
dc.typemaster thesis
dspace.entity.typePublication
rcaap.rightsopenAccesspt_PT
rcaap.typemasterThesispt_PT
thesis.degree.nameMestrado em Engenharia Informática - Sistemas Computacionaispt_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DM_SilvestreCarvalho_2020_MEI.pdf
Size:
6.74 MB
Format:
Adobe Portable Document Format