Repository logo
 
Publication

Adversarial Robustness and Feature Impact Analysis for Driver Drowsiness Detection

dc.contributor.authorVitorino, João
dc.contributor.authorRodrigues, Lourenço
dc.contributor.authorMaia, Eva
dc.contributor.authorPraça, Isabel
dc.contributor.authorLourenço, André
dc.date.accessioned2023-09-05T13:45:50Z
dc.date.available2023-09-05T13:45:50Z
dc.date.issued2023
dc.description.abstractDrowsy driving is a major cause of road accidents, but drivers are dismissive of the impact that fatigue can have on their reaction times. To detect drowsiness before any impairment occurs, a promising strategy is using Machine Learning (ML) to monitor Heart Rate Variability (HRV) signals. This work presents multiple experiments with different HRV time windows and ML models, a feature impact analysis using Shapley Additive Explanations (SHAP), and an adversarial robustness analysis to assess their reliability when processing faulty input data and perturbed HRV signals. The most reliable model was Extreme Gradient Boosting (XGB) and the optimal time window had between 120 and 150 s. Furthermore, the 18 most impactful features were selected and new smaller models were trained, achieving a performance as good as the initial ones. Despite the susceptibility of all models to adversarial attacks, adversarial training enabled them to preserve significantly higher results, so it can be a valuable approach to provide a more robust driver drowsiness detection.pt_PT
dc.description.sponsorshipThis work was done and funded in the scope of the European Union's Horizon 2020 research and innovation program, under project VALU3S (grant agreement no. 876852). This work has also received funding from UIDP/00760/2020. A publicly available dataset was utilized in this work. The data can be found at: https://hdl.handle.net/2268/191620.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.arxiv10.48550/arXiv.2303.13649
dc.identifier.doi10.1007/978-3-031-34344-5_13pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/23453
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relationVerification and Validation of Automated Systems' Safety and Security
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-031-34344-5_13pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectAdversarial robustnesspt_PT
dc.subjectExplainabilitypt_PT
dc.subjectMachine learningpt_PT
dc.subjectHeart rate variabilitypt_PT
dc.subjectDriver drowsiness detectionpt_PT
dc.titleAdversarial Robustness and Feature Impact Analysis for Driver Drowsiness Detectionpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleVerification and Validation of Automated Systems' Safety and Security
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/876852/EU
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00760%2F2020/PT
oaire.citation.endPage113pt_PT
oaire.citation.startPage108pt_PT
oaire.citation.titleInternational Conference on Artificial Intelligence in Medicine - AIME 2023pt_PT
oaire.citation.volume13897pt_PT
oaire.fundingStreamH2020
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMachado Vitorino
person.familyNameMaia
person.familyNamePraça
person.givenNameJoão Pedro
person.givenNameEva
person.givenNameIsabel
person.identifierHlqCxhoAAAAJ
person.identifier299522
person.identifier.ciencia-id3312-592F-B628
person.identifier.ciencia-id4F14-EF83-C4B9
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.orcid0000-0002-4968-3653
person.identifier.orcid0000-0002-8075-531X
person.identifier.orcid0000-0002-2519-9859
person.identifier.ridK-8430-2014
person.identifier.scopus-author-id57579914600
person.identifier.scopus-author-id22734900800
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameEuropean Commission
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication4435bb64-8a77-407b-ba18-4833d26e72ae
relation.isAuthorOfPublication47a108c4-cf8a-46f3-8954-90624174e8fc
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublication.latestForDiscovery47a108c4-cf8a-46f3-8954-90624174e8fc
relation.isProjectOfPublication1b3082bd-64c8-41d8-9f32-bb7f4b0d7bde
relation.isProjectOfPublication6eb94c83-adf9-4d9d-a75c-be95f44e3ca5
relation.isProjectOfPublication.latestForDiscovery6eb94c83-adf9-4d9d-a75c-be95f44e3ca5

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_JVitorino_2023.pdf
Size:
357.98 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: