Repository logo
 
Publication

Industrial Facility Electricity Consumption Forecast Using Artificial Neural Networks and Incremental Learning

dc.contributor.authorRamos, Daniel
dc.contributor.authorFaria, Pedro
dc.contributor.authorVale, Zita
dc.contributor.authorMourinho, João
dc.contributor.authorCorreia, Regina
dc.date.accessioned2021-03-04T18:08:19Z
dc.date.available2021-03-04T18:08:19Z
dc.date.issued2020
dc.descriptionThis article belongs to the Special Issue Time Series Forecasting for Energy Consumptionpt_PT
dc.description.abstractSociety’s concerns with electricity consumption have motivated researchers to improve on the way that energy consumption management is done. The reduction of energy consumption and the optimization of energy management are, therefore, two major aspects to be considered. Additionally, load forecast provides relevant information with the support of historical data allowing an enhanced energy management, allowing energy costs reduction. In this paper, the proposed consumption forecast methodology uses an Artificial Neural Network (ANN) and incremental learning to increase the forecast accuracy. The ANN is retrained daily, providing an updated forecasting model. The case study uses 16 months of data, split in 5-min periods, from a real industrial facility. The advantages of using the proposed method are illustrated with the numerical resultspt_PT
dc.description.sponsorshipThis work has received funding from Portugal 2020 under the SPEAR project (NORTE-01-0247-FEDER-040224), in the scope of the ITEA 3 SPEAR Project 16001, from FEDER Funds through the COMPETE program and from National Funds through FCT under the project UIDB/00760/2020 and CEECIND/02887/2017.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/en13184774pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/17285
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/13/18/4774pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectElectricity consumptionpt_PT
dc.subjectMachine learningpt_PT
dc.subjectLoad forecastpt_PT
dc.subjectIndustrial facilitypt_PT
dc.titleIndustrial Facility Electricity Consumption Forecast Using Artificial Neural Networks and Incremental Learningpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue18pt_PT
oaire.citation.startPage4774pt_PT
oaire.citation.titleEnergiespt_PT
oaire.citation.volume13pt_PT
person.familyNameFaria
person.familyNameVale
person.givenNamePedro
person.givenNameZita
person.identifier632184
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id7004115775
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_GECAD_DRamos_2020.pdf
Size:
4.5 MB
Format:
Adobe Portable Document Format