Repository logo
 
Publication

Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach

dc.contributor.authorLi, Kai
dc.contributor.authorNi, Wei
dc.contributor.authorTovar, Eduardo
dc.contributor.authorJamalipour, Abbas
dc.date.accessioned2021-02-25T14:14:09Z
dc.date.embargo2120
dc.date.issued2021
dc.description.abstractApplications of unmanned aerial vehicles (UAVs) for data collection are a promising means to extend Internet of Things (IoT) networks to remote and hostile areas and to locations where there is no access to power supplies. The adequate design of UAV velocity control and communication decision making is critical to minimize the data packet losses at ground IoT nodes that result from overflowing buffers and transmission failures. However, online velocity control and communication decision making are challenging in UAV-enabled IoT networks, due to a UAV?s lack of up-to-date knowledge about the state of the nodes, e.g., the battery energy, buffer length, and channel conditions.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/MVT.2020.3039199pt_PT
dc.identifier.issn1556-6080
dc.identifier.urihttp://hdl.handle.net/10400.22/17146
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherInstitute of Electrical and Electronics Engineerspt_PT
dc.relationARNET, ref. POCI-01- 0145-FEDER-029074pt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9298800pt_PT
dc.subjectUnmanned aerial vehiclept_PT
dc.subjectInternet-of-Thingspt_PT
dc.subjectVelocity controlpt_PT
dc.subjectData capturept_PT
dc.subjectDeep reinforcement learningpt_PT
dc.titleOnline Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approachpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage56pt_PT
oaire.citation.issue1pt_PT
oaire.citation.startPage49pt_PT
oaire.citation.titleIEEE Vehicular Technology Magazinept_PT
oaire.citation.volume16pt_PT
person.familyNameLi
person.familyNameTovar
person.givenNameKai
person.givenNameEduardo
person.identifier.ciencia-idEE10-B822-16ED
person.identifier.ciencia-id6017-8881-11E8
person.identifier.orcid0000-0002-0517-2392
person.identifier.orcid0000-0001-8979-3876
person.identifier.scopus-author-id7006312557
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication21f3fb85-19c2-4c89-afcd-3acb27cedc5e
relation.isAuthorOfPublication80b63d8a-2e6d-484e-af3c-55849d0cb65e
relation.isAuthorOfPublication.latestForDiscovery21f3fb85-19c2-4c89-afcd-3acb27cedc5e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_CISTER_Kai_2021.pdf
Size:
685.48 KB
Format:
Adobe Portable Document Format