| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 3.68 MB | Adobe PDF | |||
| 1.74 KB | License |
Authors
Abstract(s)
A digitalização da indústria tem trazido um novo paradigma de interação entre o operador e a mÔquina. Com a introdução da robótica nas linhas de produção a interação entre o operador e os robots torna-se frequente levando a que em algumas situações seja muito próxima. Esta evolução representa um enorme desafio não apenas do ponto de vista tecnológico, mas também do ponto de vista da segurança dos operadores. A monitorização do comportamento humano e a perceção do estado emocional do operador pode ser um fator decisivo na deteção precoce e prevenção de acidentes. Atualmente, existem diversos meios que podem ser utilizados nessa monitorização e deteção, sendo que os meios não invasivos trazem vantagens ao não implicar adaptação do operador a mais tecnologias. A utilização de inteligência artificial para detetar as emoções dos operadores torna-se cada vez mais frequente. Esta monitorização permite analisar o comportamento dos mesmos e criar uma estimativa da probabilidade de ocorrer um acidente. Operadores que apresentem sinais de stress ou de cansaço tem maior risco de ter um acidente. Esta anÔlise é obtida através da obtenção de imagens da face do operador e, através de algoritmos as imagens são classificadas em emoções. Para além da monitorização das emoções, também a monitorização dos movimentos dos corpos é utilizada para rastrear o operador e identificar potenciais acidentes. Na presente dissertação pretende-se combinar estes diferentes tipos de monitorização de comportamentos de risco, tais como a deteção dos estados emocionais associados à fadiga e ao stress.
The digitalization of the industry has brought a new paradigm between the operator and the machine. With the introduction of the robotic in the production lines, the interaction of the operator with the machine becomes more frequent and in some situations this interaction may be very close. This evolution represents a big challenge not only from the technology point of view, but also from the point of view of the operator safety. Monitoring the human behaviour and the perception of the operator emotional state could be a decisive factor in early detection and prevention of labour accidents. Currently, there are several means that can be used to monitoring the human behaviour, however the non-invasive means have more advantages by the fact they do not require the operator adaption to new technologies. The artificial intelligence has become more used in monitoring the human emotions. Monitoring the human emotions turns possible to estimate a probability to occur an accident between the operator and the machine. The operators showing stress or tiredness have more probability to have an accident. This process is done capturing images of the operator and through algorithms the images are classified in emotions. Also, the operatorās movements are captured to identify potential accidents. The current work intends to combine different types of monitoring of risk behaviours of the operator, such as the operator emotional state associated with fatigue or stress.
The digitalization of the industry has brought a new paradigm between the operator and the machine. With the introduction of the robotic in the production lines, the interaction of the operator with the machine becomes more frequent and in some situations this interaction may be very close. This evolution represents a big challenge not only from the technology point of view, but also from the point of view of the operator safety. Monitoring the human behaviour and the perception of the operator emotional state could be a decisive factor in early detection and prevention of labour accidents. Currently, there are several means that can be used to monitoring the human behaviour, however the non-invasive means have more advantages by the fact they do not require the operator adaption to new technologies. The artificial intelligence has become more used in monitoring the human emotions. Monitoring the human emotions turns possible to estimate a probability to occur an accident between the operator and the machine. The operators showing stress or tiredness have more probability to have an accident. This process is done capturing images of the operator and through algorithms the images are classified in emotions. Also, the operatorās movements are captured to identify potential accidents. The current work intends to combine different types of monitoring of risk behaviours of the operator, such as the operator emotional state associated with fatigue or stress.
Description
Keywords
InteligĆŖncia artificial Robótica Aprendizagem mĆ”quina Deteção emoƧƵes Deteção movimentos IndĆŗstria Artificial intelligence Robotics Machine Learning Emotion detection Movementsā detection Industry
