Repository logo
 
Publication

Using diverse sensors in load forecasting in an office building to support energy management

dc.contributor.authorRamos, Daniel
dc.contributor.authorTeixeira, Brígida
dc.contributor.authorFaria, Pedro
dc.contributor.authorGomes, Luis
dc.contributor.authorAbrishambaf, Omid
dc.contributor.authorVale, Zita
dc.date.accessioned2021-09-17T14:21:05Z
dc.date.available2021-09-17T14:21:05Z
dc.date.issued2020
dc.description.abstractThe increasing penetration of renewable energy sources led to the development of several energy management approaches. One of the main topics in this field is related to the load forecast in buildings, which can contribute to more intelligent and sustainable energy consumption. However, it is necessary to build a proper forecast model, capable of detecting an accurate consumption profile. The minimum effort to achieve this is to extract a historic with energy consumptions to use as input. Additional information should be considered in order to achieve improvements in forecasting results. This way, information regarding the day of the week is discussed as a reliable source of information that may enhance the load forecast. In this paper, two forecasting techniques, namely neural networks and support vector machine, are used to predict the energy consumption of a building for all 5 min from a period. The proposed model finds the best forecasting technique and determines if the additional information regarding the day of the week enhances the load forecast. In this case study, a period of two years and a half data with a 5-minute time interval is used. Moreover, several tests are performed for varied inputs to understand if the insights are consistent for these tests. This data has been adapted from an office building to illustrate the advantages of the proposed methodology.pt_PT
dc.description.sponsorshipThis work has received funding from FEDER Funds through COMPETE program and from National Funds through (FCT) under the projects UIDB/00760/2020, MAS-Society (PTDC/EEI-EEE/28954/2017), CEECIND/02887/2017, and SFRH/BD/144200/2019, and from ANI (project GREEDi).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.egyr.2020.11.100pt_PT
dc.identifier.issn2352-4847
dc.identifier.urihttp://hdl.handle.net/10400.22/18418
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relationCEECIND/02887/2017pt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2352484720315250?via%3Dihubpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectClusteringpt_PT
dc.subjectData miningpt_PT
dc.subjectFuzzy C-meanspt_PT
dc.subjectTypical load profilept_PT
dc.subjectUnsupervised learningpt_PT
dc.titleUsing diverse sensors in load forecasting in an office building to support energy managementpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/150159/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/OE/74543/PT
oaire.citation.endPage187pt_PT
oaire.citation.startPage182pt_PT
oaire.citation.titleEnergy Reportspt_PT
oaire.citation.volume6pt_PT
oaire.fundingStream9471 - RIDTI
oaire.fundingStreamOE
person.familyNameTeixeira
person.familyNameFaria
person.familyNameAbrishambaf
person.familyNameVale
person.givenNameBrígida
person.givenNamePedro
person.givenNameOmid
person.givenNameZita
person.identifierFWGHOEYAAAAJ
person.identifier632184
person.identifier.ciencia-id1B19-6E7A-A964
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id6F19-CB63-C8A8
person.identifier.ciencia-id7F1A-B942-5BD2
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-0848-5319
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-8597-3383
person.identifier.orcid0000-0002-4249-8367
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id57189232486
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationf3d879cf-dba2-4682-af75-a2ba22130b4e
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationeaac2304-a007-4531-8398-ee9f426c2f52
relation.isAuthorOfPublication72f5a93f-febb-46bf-a69d-50881f80cb41
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryf3d879cf-dba2-4682-af75-a2ba22130b4e
relation.isProjectOfPublication3ed6208b-ca2d-4045-acd4-71adf2095c38
relation.isProjectOfPublicationf1ab12f4-1fe9-4c0c-9d9c-3cfb32dee75c
relation.isProjectOfPublication.latestForDiscovery3ed6208b-ca2d-4045-acd4-71adf2095c38

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_GECAD_Ramos_2020.pdf
Size:
485.27 KB
Format:
Adobe Portable Document Format