Repository logo
 
Publication

Electronic Conduction Mechanisms and Defects in Polycrystalline Antimony Selenide

dc.contributor.authorCifuentes, N.
dc.contributor.authorGhosh, Santunu
dc.contributor.authorShongolova, A.
dc.contributor.authorCorreia, M. R.
dc.contributor.authorSalomé, P. M. P.
dc.contributor.authorFernandes, P. A.
dc.contributor.authorRanjbar, S.
dc.contributor.authorGarud, S.
dc.contributor.authorVermang, B.
dc.contributor.authorRibeiro, G. M.
dc.contributor.authorGonzález, J. C.
dc.date.accessioned2021-04-26T11:18:16Z
dc.date.embargo2100
dc.date.issued2020-02-28
dc.description.abstractA study of the electronic conduction mechanisms and electrically active defects in polycrystalline Sb2Se3 is presented. It is shown that for temperatures above 200 K, the electrical transport is dominated by thermal emission of free holes, ionized from shallow acceptors, over the intergrain potential barriers. In this temperature range, the temperature dependence of the mobility of holes, limited by the intergrain potential barriers, is the main contributor to the observed thermal activation energy of the conductivity of 485 meV. However, at lower temperatures, nearest-neighbor and Mott variable range hopping transport in the bulk of the grains turn into the dominant conduction mechanisms. Important parameters of the electronic structure of the Sb2Se3 thin film such as the average intergrain potential barrier height ϕ = 391 meV, the intergrain trap density Nt = 3.4 × 1011 cm−2, the shallow acceptor ionization energy EA0 = 124 meV, the acceptor density NA = 1 × 1017 cm−3, the net donor density ND = 8.3 × 1016 cm−3, and the compensation ratio k = 0, 79 were determined from the analysis of these measurements.pt_PT
dc.description.sponsorshipP. M. P. Salomé acknowledges the funding of Fundação para Ciencêa e Tecnologia (FCT) through the project IF/00133/ ̂2015. This research is supported by the Development of novel ultrathin solar cell architectures for low-light, low-cost, and flexible optoelectronic devices project (028075) co-funded by FCT and ERDF through COMPETE2020. B. Vermang has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 715027). A. Shongalova acknowledges the funding of Erasmus + program 2016/17. This work was funded by FEDER funds through the COMPETE 2020 Programme and by FCTPortuguese Foundation for Science and Technology under the projects UID/CTM/50025/2013. The financial support from Brazilian funding agencies CNPq, CAPES, and FAPEMIG is also acknowledged.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1021/acs.jpcc.0c00398pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/17872
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherAmerican Chemical Societypt_PT
dc.relationIF/00133/2015pt_PT
dc.relationApplying silicon solar cell technology to revolutionize the design of thin-film solar cells and enhance their efficiency, cost and stability
dc.relation.publisherversionhttps://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00398pt_PT
dc.subjectPhotovoltaicspt_PT
dc.subjectElectronic Conductionpt_PT
dc.titleElectronic Conduction Mechanisms and Defects in Polycrystalline Antimony Selenidept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleApplying silicon solar cell technology to revolutionize the design of thin-film solar cells and enhance their efficiency, cost and stability
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/715027/EU
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FCTM%2F50025%2F2013/PT
oaire.citation.endPage7682pt_PT
oaire.citation.issue14pt_PT
oaire.citation.startPage7677pt_PT
oaire.citation.titleThe Journal of Physical Chemistry Cpt_PT
oaire.citation.volume124pt_PT
oaire.fundingStreamH2020
oaire.fundingStream5876
person.familyNameGhosh
person.familyNameSalomé
person.familyNameFernandes
person.familyNameGonzález
person.givenNameSantunu
person.givenNamePedro
person.givenNamePaulo
person.givenNameJuan
person.identifier.ciencia-id2119-3043-1A15
person.identifier.orcid0000-0002-2666-9461
person.identifier.orcid0000-0002-1050-2958
person.identifier.orcid0000-0002-1860-7797
person.identifier.orcid0000-0001-9155-1657
person.identifier.ridE-5562-2013
person.identifier.ridJ-5264-2013
person.identifier.ridI-1748-2012
person.identifier.scopus-author-id13805657700
person.identifier.scopus-author-id35568397500
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameEuropean Commission
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication33f22723-46fc-4c5b-8666-bd3af3574c16
relation.isAuthorOfPublicationc8985e0d-50ff-4626-be84-de0327b69d82
relation.isAuthorOfPublication75281af2-3dd9-4a53-a2eb-07de6b8e8ba4
relation.isAuthorOfPublication65043a4c-9db0-4c0d-93a5-7eda9eb8a5e3
relation.isAuthorOfPublication.latestForDiscovery75281af2-3dd9-4a53-a2eb-07de6b8e8ba4
relation.isProjectOfPublicationeefa3d79-5195-41c7-bce9-752f4d6f4198
relation.isProjectOfPublication6e9a21c0-bc45-4ff7-b217-d67c19068593
relation.isProjectOfPublication.latestForDiscovery6e9a21c0-bc45-4ff7-b217-d67c19068593

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART29_CIETI_2020.pdf
Size:
5.43 MB
Format:
Adobe Portable Document Format