Publication
A Short Review on Data Mining Techniques for Electricity Customers Characterization
dc.contributor.author | Cembranel, Samuel S. | |
dc.contributor.author | Lezama, Fernando | |
dc.contributor.author | Soares, João | |
dc.contributor.author | Filipe Ramos, Sérgio | |
dc.contributor.author | Gomes, Antonio | |
dc.contributor.author | Vale, Zita | |
dc.date.accessioned | 2019-11-22T15:10:43Z | |
dc.date.embargo | 2119 | |
dc.date.issued | 2019 | |
dc.description.abstract | An important tool to manage electrical systems is the knowledge of customers' consumption patterns. Data Mining (DM) emerges as an important tool for extracting information about energy consumption in databases and identifying consumption patterns. This paper presents a short review on DM, with a focus on the characterization of electricity customers supported on knowledge discovery in database (KDD) process. The study includes several steps: first, few concepts of the KDD process are presented; following, a short review of clustering algorithms is presented including partitional, hierarchical, fuzzy, evolutionary methods, and Self-Organizing Maps; finally, the main concepts and methods for load classification, based on load shape indices are presented. The main objective of this work is to present a short review of DM techniques applied to identify typical load profiles in electrical systems and new customers' classification. | pt_PT |
dc.description.sponsorship | This work has received funding from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2019 and BENEFICE – PTDC/EEI-EEE/29070/2017 | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1109/GTDAsia.2019.8715891 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.22/14935 | |
dc.language.iso | eng | pt_PT |
dc.publisher | Institute of Electrical and Electronics Engineers | pt_PT |
dc.relation | BENEFICE – PTDC/EEI-EEE/29070/2017 | pt_PT |
dc.relation | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/8715891 | pt_PT |
dc.subject | Classification | pt_PT |
dc.subject | Clustering | pt_PT |
dc.subject | Data Mining | pt_PT |
dc.subject | Knowledge Discovery in Databases | pt_PT |
dc.subject | Load Profiling | pt_PT |
dc.title | A Short Review on Data Mining Techniques for Electricity Customers Characterization | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT | |
oaire.citation.conferencePlace | Bangkok, Thailand,19-23 March 2019 | pt_PT |
oaire.citation.endPage | 199 | pt_PT |
oaire.citation.startPage | 194 | pt_PT |
oaire.citation.title | 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia) | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Lezama | |
person.familyName | Soares | |
person.familyName | Carvalho Ramos | |
person.familyName | Vale | |
person.givenName | Fernando | |
person.givenName | João | |
person.givenName | Sérgio Filipe | |
person.givenName | Zita | |
person.identifier | 1043580 | |
person.identifier | 632184 | |
person.identifier.ciencia-id | E31F-56D6-1E0F | |
person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
person.identifier.ciencia-id | 6D1F-C495-6660 | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0001-8638-8373 | |
person.identifier.orcid | 0000-0002-4172-4502 | |
person.identifier.orcid | 0000-0002-1120-5656 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | A-6945-2017 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 36810077500 | |
person.identifier.scopus-author-id | 35436109600 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | embargoedAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
relation.isAuthorOfPublication | f01a54a0-e6c0-4cf3-afd8-5a664bbac7b4 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
relation.isProjectOfPublication | 9b771c00-8c2c-4226-b06d-e33ef11f0d32 | |
relation.isProjectOfPublication.latestForDiscovery | 9b771c00-8c2c-4226-b06d-e33ef11f0d32 |