Repository logo
 
Publication

Distributed learning of energy contracts negotiation strategies with collaborative reinforcement learning

dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.date.accessioned2021-02-03T16:40:37Z
dc.date.available2021-02-03T16:40:37Z
dc.date.issued2019
dc.description.abstractThe evolution of electricity markets towards local energy trading models, including peer-to-peer transactions, is bringing by multiple challenges for the involved players. In particular, small consumers, prosumers and generators, with no experience on participating in competitive energy markets, are not prepared for facing such an environment. This paper addresses this problem by proposing a decision support solution for small players negotiations in local transactions. The collaborative reinforcement learning concept is applied to combine different learning processes and reached an enhanced final decision for players actions in bilateral negotiations. The reinforcement learning process is based on the application of the Q-Learning algorithm; and the continuous combination of the different learning results applies and compares several collaborative learning algorithms, namely BEST-Q, Average (AVE)-Q; Particle Swarm Optimization (PSO)-Q, and Weighted Strategy Sharing (WSS)-Q and uses a model to aggregate these results. Results show that the collaborative learning process enables players' to correctly identify the negotiation strategy to apply in each moment, context and against each opponent.pt_PT
dc.description.sponsorshipDOMINOES - Smart Distribution Grid: a Market Driven Approach for the Next Generation of Advanced Operation Models and Services (771066)pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/EEM.2019.8916342pt_PT
dc.identifier.isbn978-1-7281-1257-2
dc.identifier.issn2165-4093
dc.identifier.urihttp://hdl.handle.net/10400.22/16860
dc.language.isoengpt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8916342pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/pt_PT
dc.subjectCollaborative reinforcement learningpt_PT
dc.subjectElectricity marketspt_PT
dc.subjectEnergy contractspt_PT
dc.subjectNegotiation Strategiespt_PT
dc.subjectQ-Learningpt_PT
dc.titleDistributed learning of energy contracts negotiation strategies with collaborative reinforcement learningpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceLjubljana, Sloveniapt_PT
oaire.citation.endPage6pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2019 16th International Conference on the European Energy Market (EEM)pt_PT
person.familyNamePinto
person.familyNameVale
person.givenNameTiago
person.givenNameZita
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_EEM_2019_Pinto__AUTHOR-VERSION(1).pdf
Size:
959.85 KB
Format:
Adobe Portable Document Format