Repository logo
 
Publication

A probabilistic methodology for distributed generation location in isolated electrical service area

dc.contributor.authorKhodr, H. M.
dc.contributor.authorSilva, Marco
dc.contributor.authorVale, Zita
dc.contributor.authorRamos, Carlos
dc.date.accessioned2013-05-16T10:26:00Z
dc.date.available2013-05-16T10:26:00Z
dc.date.issued2010
dc.date.updated2013-04-17T14:45:58Z
dc.description.abstractDistributed generation unlike centralized electrical generation aims to generate electrical energy on small scale as near as possible to load centers, interchanging electric power with the network. This work presents a probabilistic methodology conceived to assist the electric system planning engineers in the selection of the distributed generation location, taking into account the hourly load changes or the daily load cycle. The hourly load centers, for each of the different hourly load scenarios, are calculated deterministically. These location points, properly weighted according to their load magnitude, are used to calculate the best fit probability distribution. This distribution is used to determine the maximum likelihood perimeter of the area where each source distributed generation point should preferably be located by the planning engineers. This takes into account, for example, the availability and the cost of the land lots, which are factors of special relevance in urban areas, as well as several obstacles important for the final selection of the candidates of the distributed generation points. The proposed methodology has been applied to a real case, assuming three different bivariate probability distributions: the Gaussian distribution, a bivariate version of Freund’s exponential distribution and the Weibull probability distribution. The methodology algorithm has been programmed in MATLAB. Results are presented and discussed for the application of the methodology to a realistic case and demonstrate the ability of the proposed methodology for efficiently handling the determination of the best location of the distributed generation and their corresponding distribution networks.por
dc.identifierDOI: 10.1016/j.epsr.2009.10.001
dc.identifier.doi10.1016/j.epsr.2009.10.001pt_PT
dc.identifier.issn0378-7796
dc.identifier.urihttp://hdl.handle.net/10400.22/1596
dc.language.isoengpor
dc.publisherElsevierpor
dc.relation.ispartofseriesElectric Power Systems Research; Vol. 80, Issue 4
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0378779609002326por
dc.subjectDistributed generationpor
dc.subjectProbabilistic methodologypor
dc.subjectSource locationpor
dc.titleA probabilistic methodology for distributed generation location in isolated electrical service areapor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage399por
oaire.citation.issueIssue 4
oaire.citation.startPage390por
oaire.citation.titleElectric Power Systems Research
oaire.citation.volumeVol. 80
person.familyNameVale
person.familyNameRamos
person.givenNameZita
person.givenNameCarlos
person.identifier632184
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-id1011-FAFC-AEBA
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0002-5143-1711
person.identifier.ridA-5824-2012
person.identifier.ridK-7403-2014
person.identifier.scopus-author-id7004115775
person.identifier.scopus-author-id7201559105
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication43ef055e-80e6-4b31-8400-2d3592927e03
relation.isAuthorOfPublication.latestForDiscovery43ef055e-80e6-4b31-8400-2d3592927e03

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_HKhodr_2010_GECAD.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: