Repository logo
 
Publication

Contextual Simulated Annealing Q-Learning for Pre-negotiation of Agent-Based Bilateral Negotiations

dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.date.accessioned2021-02-03T16:32:33Z
dc.date.available2021-02-03T16:32:33Z
dc.date.issued2019
dc.description.abstractElectricity markets are complex environments, which have been suffering continuous transformations due to the increase of renewable based generation and the introduction of new players in the system. In this context, players are forced to re-think their behavior and learn how to act in this dynamic environment in order to get as much benefit as possible from market negotiations. This paper introduces a new learning model to enable players identifying the expected prices of future bilateral agreements, as a way to improve the decision-making process in deciding the opponent players to approach for actual negotiations. The proposed model introduces a con-textual dimension in the well-known Q-Learning algorithm, and includes a simulated annealing process to accelerate the convergence process. The proposed model is integrated in a multi-agent decision support system for electricity market players negotiations, enabling the experimentation of results using real data from the Iberian electricity market.pt_PT
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under project DOMINOES (grant agreement No 771066) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2019.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/978-3-030-30241-2_44pt_PT
dc.identifier.isbn978-3-030-30241-2
dc.identifier.urihttp://hdl.handle.net/10400.22/16859
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007%2F978-3-030-30241-2_44pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/pt_PT
dc.subjectBilateral Contractspt_PT
dc.subjectContext Awarenesspt_PT
dc.subjectElectricity marketspt_PT
dc.subjectReinforcement Learningpt_PT
dc.titleContextual Simulated Annealing Q-Learning for Pre-negotiation of Agent-Based Bilateral Negotiationspt_PT
dc.typebook part
dspace.entity.typePublication
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT
oaire.citation.conferencePlaceVila Real, Portugalpt_PT
oaire.citation.endPage531pt_PT
oaire.citation.startPage519pt_PT
oaire.citation.titleEPIA Conference on Artificial Intelligence (EPIA 2019)pt_PT
oaire.citation.volume11804pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNamePinto
person.familyNameVale
person.givenNameTiago
person.givenNameZita
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isProjectOfPublication9b771c00-8c2c-4226-b06d-e33ef11f0d32
relation.isProjectOfPublication.latestForDiscovery9b771c00-8c2c-4226-b06d-e33ef11f0d32

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CAPL_GECAD_EPIA_2019_Pinto_AUTHOR_VERSION.pdf
Size:
849.38 KB
Format:
Adobe Portable Document Format