Repository logo
 
Publication

Distributed Constrained Optimization Towards Effective Agent-Based Microgrid Energy Resource Management

dc.contributor.authorLezama, Fernando
dc.contributor.authorMunoz de Cote, Enrique
dc.contributor.authorFarinelli, Alessandro
dc.contributor.authorSoares, João
dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.date.accessioned2021-09-22T13:40:07Z
dc.date.available2021-09-22T13:40:07Z
dc.date.issued2019-08
dc.description.abstractThe current energy scenario requires actions towards the reduction of energy consumption and the use of renewable resources. In this context, a microgrid is a self-sustained network that can operate connected to the smart grid or in isolation. The long-term scheduling of on/off cycles of devices is a critical problem that has been commonly addressed by centralized approaches. In this work, we propose a novel agent-based method to solve the long-term scheduling problem as a distributed constraint optimization problem (DCOP) by modelling future system configurations rather than reacting to changes. Moreover, with respect to approaches based on decentralised reinforcement learning, we can directly encode system-wide hard constraints (such as for example the Kirchhoff law) which are not easy to represent in a factored representation of the problem. We compare different multi-agent DCOP algorithms showing that the proposed method can find optimal/near-optimal solutions for a specific case study.pt_PT
dc.description.sponsorshipThis work has been developed under the MAS-SOCIETY project - PTDC/EEI-EEE/28954/2017 and has received funding from UID/EEA/00760/2019, funded by FEDER Funds through COMPETE and by National Funds through FCT. This work has been also partially supported by the project "GHOTEM" Global HOuse Thermal & Electrical energy Management for Efficiency, Lower emission and Renewables, founded by the Veneto Region through the POR FESR 2014–2020 founding scheme (Action 1.1.4), DGR n. 1139 19 July 2017.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/978-3-030-30241-2_37pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/18478
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationMulti-Agent Systems SemantiC Interoperability for simulation and dEcision supporT in complex energY systems
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007%2F978-3-030-30241-2_37pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/pt_PT
dc.subjectDecentralizedpt_PT
dc.subjectDistributed optimizationpt_PT
dc.subjectMicrogridpt_PT
dc.subjectMulti- agent systemspt_PT
dc.subjectSmart gridpt_PT
dc.subjectEnergy resource managemenpt_PT
dc.titleDistributed Constrained Optimization Towards Effective Agent-Based Microgrid Energy Resource Managementpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleMulti-Agent Systems SemantiC Interoperability for simulation and dEcision supporT in complex energY systems
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28954%2F2017/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT
oaire.citation.conferencePlaceVila Real, Portugalpt_PT
oaire.citation.endPage449pt_PT
oaire.citation.startPage438pt_PT
oaire.citation.title19th EPIA Conference on Artificial Intelligencept_PT
oaire.citation.volume11804pt_PT
oaire.fundingStream9471 - RIDTI
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLezama
person.familyNameSoares
person.familyNamePinto
person.familyNameVale
person.givenNameFernando
person.givenNameJoão
person.givenNameTiago
person.givenNameZita
person.identifier1043580
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-idE31F-56D6-1E0F
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8638-8373
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-6945-2017
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id36810077500
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication6a55317b-92c2-404f-8542-c7a73061cc9b
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery6a55317b-92c2-404f-8542-c7a73061cc9b
relation.isProjectOfPublicationa620525e-5a41-410f-bd99-c7e9546e9037
relation.isProjectOfPublication9b771c00-8c2c-4226-b06d-e33ef11f0d32
relation.isProjectOfPublication.latestForDiscovery9b771c00-8c2c-4226-b06d-e33ef11f0d32

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_EPIA_2019.pdf
Size:
344.76 KB
Format:
Adobe Portable Document Format