Publication
Distributed Constrained Optimization Towards Effective Agent-Based Microgrid Energy Resource Management
dc.contributor.author | Lezama, Fernando | |
dc.contributor.author | Munoz de Cote, Enrique | |
dc.contributor.author | Farinelli, Alessandro | |
dc.contributor.author | Soares, João | |
dc.contributor.author | Pinto, Tiago | |
dc.contributor.author | Vale, Zita | |
dc.date.accessioned | 2021-09-22T13:40:07Z | |
dc.date.available | 2021-09-22T13:40:07Z | |
dc.date.issued | 2019-08 | |
dc.description.abstract | The current energy scenario requires actions towards the reduction of energy consumption and the use of renewable resources. In this context, a microgrid is a self-sustained network that can operate connected to the smart grid or in isolation. The long-term scheduling of on/off cycles of devices is a critical problem that has been commonly addressed by centralized approaches. In this work, we propose a novel agent-based method to solve the long-term scheduling problem as a distributed constraint optimization problem (DCOP) by modelling future system configurations rather than reacting to changes. Moreover, with respect to approaches based on decentralised reinforcement learning, we can directly encode system-wide hard constraints (such as for example the Kirchhoff law) which are not easy to represent in a factored representation of the problem. We compare different multi-agent DCOP algorithms showing that the proposed method can find optimal/near-optimal solutions for a specific case study. | pt_PT |
dc.description.sponsorship | This work has been developed under the MAS-SOCIETY project - PTDC/EEI-EEE/28954/2017 and has received funding from UID/EEA/00760/2019, funded by FEDER Funds through COMPETE and by National Funds through FCT. This work has been also partially supported by the project "GHOTEM" Global HOuse Thermal & Electrical energy Management for Efficiency, Lower emission and Renewables, founded by the Veneto Region through the POR FESR 2014–2020 founding scheme (Action 1.1.4), DGR n. 1139 19 July 2017. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1007/978-3-030-30241-2_37 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.22/18478 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Springer | pt_PT |
dc.relation | Multi-Agent Systems SemantiC Interoperability for simulation and dEcision supporT in complex energY systems | |
dc.relation | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
dc.relation.publisherversion | https://link.springer.com/chapter/10.1007%2F978-3-030-30241-2_37 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | pt_PT |
dc.subject | Decentralized | pt_PT |
dc.subject | Distributed optimization | pt_PT |
dc.subject | Microgrid | pt_PT |
dc.subject | Multi- agent systems | pt_PT |
dc.subject | Smart grid | pt_PT |
dc.subject | Energy resource managemen | pt_PT |
dc.title | Distributed Constrained Optimization Towards Effective Agent-Based Microgrid Energy Resource Management | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Multi-Agent Systems SemantiC Interoperability for simulation and dEcision supporT in complex energY systems | |
oaire.awardTitle | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28954%2F2017/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT | |
oaire.citation.conferencePlace | Vila Real, Portugal | pt_PT |
oaire.citation.endPage | 449 | pt_PT |
oaire.citation.startPage | 438 | pt_PT |
oaire.citation.title | 19th EPIA Conference on Artificial Intelligence | pt_PT |
oaire.citation.volume | 11804 | pt_PT |
oaire.fundingStream | 9471 - RIDTI | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Lezama | |
person.familyName | Soares | |
person.familyName | Pinto | |
person.familyName | Vale | |
person.givenName | Fernando | |
person.givenName | João | |
person.givenName | Tiago | |
person.givenName | Zita | |
person.identifier | 1043580 | |
person.identifier | R-000-T7J | |
person.identifier | 632184 | |
person.identifier.ciencia-id | E31F-56D6-1E0F | |
person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
person.identifier.ciencia-id | 2414-9B03-C4BB | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0001-8638-8373 | |
person.identifier.orcid | 0000-0002-4172-4502 | |
person.identifier.orcid | 0000-0001-8248-080X | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | A-6945-2017 | |
person.identifier.rid | T-2245-2018 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 36810077500 | |
person.identifier.scopus-author-id | 35436109600 | |
person.identifier.scopus-author-id | 35219107600 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
relation.isAuthorOfPublication | 8d58ddc0-1023-47c0-a005-129d412ce98d | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
relation.isProjectOfPublication | a620525e-5a41-410f-bd99-c7e9546e9037 | |
relation.isProjectOfPublication | 9b771c00-8c2c-4226-b06d-e33ef11f0d32 | |
relation.isProjectOfPublication.latestForDiscovery | 9b771c00-8c2c-4226-b06d-e33ef11f0d32 |
Files
Original bundle
1 - 1 of 1