Repository logo
 
Publication

Applying Data Mining Techniques to Improve Breast Cancer Diagnosis

dc.contributor.authorDiz, Joana
dc.contributor.authorMarreiros, Goreti
dc.contributor.authorFreitas, Alberto
dc.date.accessioned2017-01-25T10:10:22Z
dc.date.embargo2117-08
dc.date.issued2016-08
dc.description.abstractIn the field of breast cancer research, and more than ever, new computer aided diagnosis based systems have been developed aiming to reduce diagnostic tests false-positives. Within this work, we present a data mining based approach which might support oncologists in the process of breast cancer classification and diagnosis. The present study aims to compare two breast cancer datasets and find the best methods in predicting benign/malignant lesions, breast density classification, and even for finding identification (mass / microcalcification distinction). To carry out these tasks, two matrices of texture features extraction were implemented using Matlab, and classified using data mining algorithms, on WEKA. Results revealed good percentages of accuracy for each class: 89.3 to 64.7 % - benign/malignant; 75.8 to 78.3 % - dense/fatty tissue; 71.0 to 83.1 % - finding identification. Among the different tests classifiers, Naive Bayes was the best to identify masses texture, and Random Forests was the first or second best classifier for the majority of tested groups.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/s10916-016-0561-ypt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/9380
dc.language.isoengpt_PT
dc.publisherSpringer Verlagpt_PT
dc.relation.ispartofseriesJournal of Medical Systems;Vol. 40, Issue 9
dc.relation.publisherversionhttp://link.springer.com/article/10.1007/s10916-016-0561-ypt_PT
dc.subjectBreast cancer diagnosispt_PT
dc.subjectFeatures extractionpt_PT
dc.subjectData mining techniquespt_PT
dc.titleApplying Data Mining Techniques to Improve Breast Cancer Diagnosispt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage7pt_PT
oaire.citation.issue9pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleJournal of Medical Systemspt_PT
oaire.citation.volume40pt_PT
person.familyNameMarreiros
person.givenNameGoreti
person.identifier.ciencia-idA412-138E-2389
person.identifier.orcid0000-0003-4417-8401
person.identifier.ridM-4583-2013
person.identifier.scopus-author-id9332465700
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationf084569f-09f5-4d00-b759-aa4a5802f051
relation.isAuthorOfPublication.latestForDiscoveryf084569f-09f5-4d00-b759-aa4a5802f051

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_GoretiMarreiros_GECAD_2016.pdf
Size:
314.11 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: