Repository logo
 
Publication

Deteção de Falha de Ignição

dc.contributor.advisorBarbosa, Ramiro de Sousa
dc.contributor.authorSantos, Francisco José Maravilha
dc.date.accessioned2021-09-01T10:33:36Z
dc.date.available2024-07-28T00:30:46Z
dc.date.issued2021
dc.description.abstractThis project analyzes some models of Machine Learning and Deep Learning in the context of misfire detection. Initially, the themes of misfire and Machine Learning are contextualized. The main objective of this project is to replace the existing ignition failure detection algorithm with a Machine Learning model. For this, the process was divided into several phases: problem formulation, data exploration, preparation and pre-processing of the data, building the model, and exporting it. For this, two versions of Matlab were used, 2020a and 2016b. The 2020a version was used to carry out all steps up to the export of the model. The 2016b version was used to perform the comparison with the detection algorithm already developed. Furthermore, dSpace TargetLink was used to generate the C code. The construction of several models allows, through different metrics such as accuracy, precision, recall, and F1 score, to analyze and compare them and determine which model is the best. With the completion of this project, we learned about the ignition failure event, but mainly about Machine Learning. All the necessary steps were learned, both in terms of data preparation and programming for the construction of the model and calculation of the respective metrics to evaluate the models. With this type of work, it was highlighted that Machine Learning is an iterative process, it can be present in the most diverse areas and with many different purposes. Machine Learning is already present in many industries and applications of our daily lives, but it is estimated that in the future its presence will be almost the majority.pt_PT
dc.description.abstractNeste projeto é analisado alguns modelos de Machine Learning e Deep Learning no contexto da deteção de falha de ignição. Incialmente é contextualizado os temas falha de ignição e Machine Learning. O objetivo principal deste projeto é substituir o algoritmo de deteção da falha de ignição já existente, por um modelo de Machine Learning. Para isso dividiu-se o processo por várias fases: formulação do problema, exploração dos dados, preparação e pré-processamento dos dados, construção do modelo e exportação deste. Para isso, foram utilizadas duas versões de MATLAB, 2020a e 2016b. A versão 2020a é utilizada para realizar todas as estapas até à exportação do modelo. A versão 2016b é utilizada para realizar a comparação com o algoritmo de deteção já desenvolvido. Para além disso, foi utilizado o dSpace TargetLink para a gerar o código C. A construção de vários modelos permite, através de diferentes métricas como a accuracy, precision, recall e F1 score, analisá-los e compará-los e aferir qual dos modelos é o melhor. Com a realização deste projeto, aprendeu-se sobre o evento de falha de ingnição, mas sobretudo sobre Machine Learning. Aprendeu-se todos os passos necessários, tanto em termos de preparação de dados como a programação para a construção do modelo e cálculo das respetivas métricas para avaliar os modelos. Com este tipo de trabalho, realçou-se que o processo de Machine Learning é um processo iterativo, pode estar presente nas mais diversas áreas e com fins diferentes. O Machine Learning já está muito presente em diversas indústrias e aplicações do nosso quotidiano, mas estima-se que no futuro a sua presença seja quase maioritária.pt_PT
dc.identifier.tid202835588
dc.identifier.urihttp://hdl.handle.net/10400.22/18279
dc.language.isoengpt_PT
dc.subjectMisfirept_PT
dc.subjectMachine Learningpt_PT
dc.subjectDeep Learningpt_PT
dc.subjectMATLABpt_PT
dc.subjectFalha de Igniçãopt_PT
dc.titleDeteção de Falha de Igniçãopt_PT
dc.typemaster thesis
dspace.entity.typePublication
rcaap.rightsopenAccesspt_PT
rcaap.typemasterThesispt_PT
thesis.degree.nameMestrado em Engenharia Eletrotécnica e de Computadores - Automação e Sistemaspt_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DM_FranciscoSantos_2021_MEEC.pdf
Size:
7.43 MB
Format:
Adobe Portable Document Format