Repository logo
 
Publication

Reinforcement Learning for Scheduling Wireless Powered Sensor Communications

dc.contributor.authorLi, Kai
dc.contributor.authorNi, Wei
dc.contributor.authorAbolhasan, Mehran
dc.contributor.authorTovar, Eduardo
dc.date.accessioned2019-06-06T09:03:56Z
dc.date.embargo2119
dc.date.issued2019
dc.description.abstractIn a wireless powered sensor network, a base station transfers power to sensors by using wireless power transfer (WPT). Inadequately scheduling WPT and data transmission causes fast battery drainage and data queue overflow of some sensors who could have potentially gained high data reception. In this paper, scheduling WPT and data transmission is formulated as a Markov decision process (MDP) by jointly considering sensors’ energy consumption and data queue. In practical scenarios, the prior knowledge about battery level and data queue length in MDP is not available at the base station. We study reinforcement learning at the sensors to find a transmission scheduling strategy, minimizing data packet loss. An optimal scheduling strategy with full-state information is also investigated, assuming that the complete battery level and data queue information are well known by the base station. This presents the lower bound of the data packet loss in wireless powered sensor networks. Numerical results demonstrate that the proposed reinforcement learning scheduling algorithm significantly reduces network packet loss rate by 60%, and increases network goodput by 67%, compared to existing non-MDP greedy approaches. Moreover, comparing the optimal solutions, the performance loss due to the lack of sensors’ full-state information is less than 4.6%.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/TGCN.2018.2879023pt_PT
dc.identifier.issn2473-2400
dc.identifier.urihttp://hdl.handle.net/10400.22/13851
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationARNET (ref. POCI-01-0145- FEDER-029074)pt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8516308pt_PT
dc.subjectWireless sensor networkpt_PT
dc.subjectWireless power transferpt_PT
dc.subjectMarkov decision processpt_PT
dc.subjectReinforcement learningpt_PT
dc.subjectOptimizationpt_PT
dc.titleReinforcement Learning for Scheduling Wireless Powered Sensor Communicationspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage274pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage264pt_PT
oaire.citation.titleIEEE Transactions on Green Communications and Networkingpt_PT
oaire.citation.volume3pt_PT
person.familyNameLi
person.familyNameNi
person.familyNameabolhasan
person.familyNameTovar
person.givenNameKai
person.givenNameWei
person.givenNamemehran
person.givenNameEduardo
person.identifier.ciencia-idEE10-B822-16ED
person.identifier.ciencia-id6017-8881-11E8
person.identifier.orcid0000-0002-0517-2392
person.identifier.orcid0000-0002-4933-594X
person.identifier.orcid0000-0002-4282-6666
person.identifier.orcid0000-0001-8979-3876
person.identifier.ridG-7365-2014
person.identifier.scopus-author-id7006312557
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication21f3fb85-19c2-4c89-afcd-3acb27cedc5e
relation.isAuthorOfPublicationb4a51cd0-f99d-402d-b210-1f35d5573212
relation.isAuthorOfPublicationf531a9af-3559-474e-bf79-87c4038ef58b
relation.isAuthorOfPublication80b63d8a-2e6d-484e-af3c-55849d0cb65e
relation.isAuthorOfPublication.latestForDiscovery80b63d8a-2e6d-484e-af3c-55849d0cb65e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_CISTER_2019.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: